
C/C++ for Python programmers
Dmitri Rozmanov

WestGrid HPC summer school at UofC 2019

Information:

● Coffee break: 10:30 -- 10:45 in the atrium.

● Shared Google Doc: http://bit.ly/UofC-C-Cpp

● Logging to cluster:
$ ssh username@arc.ucalgary.ca

● Interactive node request command:
$ salloc -t 4:00:00 -N 1 -n 1 -c 1 --mem=1gb

 -p single --reservation=ss2019

http://bit.ly/UofC-C-Cpp

Many use some kind of programming environment in their work. Most of the time it
is some interpreted language with a large set of scientific libraries, such as
● Python,
● GNU R,
● Matlab,
● Perl.

However, it is always a good idea to have a backup plan, when there is a need for a
brute force computational power. In such a case a good general compiled
language can be a good asset to have in the tool box.

● C / C++,
● Fortran 77 / 90 / 95,
● Julia, Go, Rust, Swift (???)

can give you the performance of this kind.

Introduction

Today we will
● Learn about compiled languages and how they compare with interpreted

programming languages.

● Understand the details of compilation process.

● Do an overview of C language and go over some examples.

● Do an overview of C++ language and compare it to C.

● Will look at the features of C++ that make it helpful for Python programmers.

● Will explore some part of C++ Standard Template Library (STL).

● Will make conclusions.

Development environment
● Bash command line shell:

$ ssh username@arc.ucalgary.ca

● Python 2.7 and GCC 4.8.5 (default):
$ module load python/anaconda2-2018.12

● GNU Screen shell session manager:
$ screen

● Text editor: vi, vim, nano, mcedit, emacs.
$ vim my_code.py
$ mcedit my_code.py

GNU Screen
Screen is a full-screen window manager for several interactive shells.

● Quick switching between the script editing and running windows;
● Session will persist if you close the lid of your laptop.

But you have to reconnect.

Minimal useful commands:

● Create a new window: C-a c
● Close a window: C-d
● Detach screen from the this terminal: C-a d
● Switch to another window: C-a “
● Toggle between two recent windows: C-a C-a
● Reconnect: $ screen -r

$ man screen

Part 1:
Introduction to C

for Python programmers

Compiled vs Interpreted Languages:
Compiled language:

● uses a compiler (translator) to translate one language into another in an off-line
mode, before execution.

● Saves a compiled version of the code in the CPU native language in binary format.
● Computations can be better optimized during dedicated translation stage.

Interpreted language:

● uses an interpreter to translate one language into another in an on-line mode,
during the run time.

● Stores the program in the original format.
● Run time translation gives more flexibility. For example, the program can be easily

modified during run time in response to the current conditions.

Compiled vs Interpreted Languages (cont.):
Compiled Interpreted

Examples C, C++, Fortran, Pascal, Rust,
Go,

Perl, Python, Ruby, R, Bash,
PHP, Matlab

Development More difficult Easier

Speed Faster Slower (x100 times)

Applications Maximum performance,
Low level programming (OS),
Hardware access (drivers),
Multi-use code,
High performance libraries.

Prototyping,
Complex “glue” coding,
Single use coding,
Interactive work.

C language facts:
● C is the longest existing programming language in the programming history.
● C is a high-level and general-purpose programming language.
● C was developed at Bell Labs by Dennis Ritchie for the Unix Operating System in

the early 1970s.
● Was developed as next after the B language, that is what C stands for.
● Most popular Linux Kernel and most UNIX utilities, what you would call the

operating system are written in C.
● C is not an object oriented language
● C is a structured programming language which allows a complex program to be

broken into simpler programs called functions.
● Dennis Ritchie and Kerninghem wrote a book “The C Programming Language”.
● C is the Latin of the programming world, it is the basis for C++, Java, Go, C#,

Python, PHP, Perl, etc.

More C language facts:
● Fixed number of keywords:

ANSI C has 32 keywords, C99 adds 5 and C11 adds 7.

● 45 logical and mathematical operators in 8 groups.

● Bit manipulators for low level programming.

● Function returns only one value and it may be ignored if not needed.

● Typing is static. All data has type but may be implicitly converted.

● Basic form of modularity: files may be separately compiled and linked.

● Control of function and object visibility to other files via extern and static attributes.

Hello World example: hello.c
● The main() function;

● The body is in {...}.

● “;” at the end of a statement.

● Type of the return value.

● #include is similar to import,
provides more functions.

● printf is a formatted print.

● “\n” is the end of line
character.

● /* … */ is a C-style comment.

● Formatting does not matter.

#include <stdio.h>

/* Our first program. */
int main(){
 printf("Hello World!\n");
 return 0;
}

Compiling hello.c
● Free compiler suite:

GCC - GNU C Compiler.

● Compilation and run-time
errors.

● Compilation warnings.

● Run-time error diagnostics
is minimal!

● If error, no executable is
produced.

● Make sure there are no
warnings either.

● $ man gcc (on Unix).

$ gcc --version
Apple LLVM version 10.0.1 (clang-1001.0.46.4)

$ gcc hello.c

$ ls -l a.out
-rwxr-xr-x 1 rozmanov staff 8432 6 May 10:15 a.out

$./a.out
Hello World!

$ gcc hello.c -o hello.x

$ ls -l hello.x
-rwxr-xr-x 1 rozmanov staff 8432 6 May 10:16 hello.x

$./hello.x
Hello World!

C preprocessor, cpp.
● Processes the source code

before compilation;

● Uses #command like
instructions without “;” at the
end.

● A very non-C style,
feels like a hack.

● Includes and Macros.

● Conditional compilation.

● Compile time computations
through macros.

● Text modifier!

#include <stdio.h>
#include "my_functions.c"

#define MAXN 100
#define OS WIN10

#if OS == MACOS
// some code here..
function_macos(MAXN)
...
#elif OS == LINUX
// some other code here..
function_linux(MAXN)
...
#else
// some third code here..
function_windows(MAXN)
...
#endif

What happens during compilation?
● Preprocessor, cpp, includes

all source and header files,
replaces macros.

● C compiler, gcc, produces
CPU specific assembler code.

● Assembler, as, compiles the
code into a binary object file.

● Linker, ld, links the object file
with required libraries to
produce the final binary code.

● Done.

1. Preprocess the source code.
$ cpp hello.c -o hello_pp.c

2. Translate C code to Assembler code.
$ gcc -S hello_pp.c -o hello.asm

3. Compile Assembler code to an Object file.
$ as hello.asm -o hello.o

4. Link the Object file with system libs.
$ ld ... hello.o -o hello.x ...

4. Simpler command:
$ gcc hello.o -o hello.x

5. Compilation is done. Run it.
$./hello.x
Hello World!

Variable declaration: vars.c

● Variables must be declared
before they can be used.

● int, unsigned int,
float, double, char.

● Special int type for sizes:
size_t = unsigned long int.

● Can be initialized in the
declaration statement.

● Undefined if not initialized.

● Formatting characters:
%d, %u, %f, %e, %g, %c.

● See man printf for more.

#include <stdio.h>

int main(){
 int i;
 int n = 0;
 printf("Integers: %d, %d\n", i, n);

 unsigned int k, l = 0;
 printf("Unsigned integers: %u, %u\n", k, l);

 float x = 5.0;
 double y = x, z;
 printf("Real numbers: %f, %e, %g\n", x, y, z);

 char a = 'a';
 char b = '!', c = '?';
 printf("Characters: %c, %c, %c\n", a, b, c);
}

Operators in C: operators.c

● Math binary operators:
+, -, /, *, %.

● Assignment operators:
=, +=, -=, *=, /=, %=.

● Increment operators:
++x, x++, --x, x--.

● Bitwise operators:
&, ^, |, ~, <<, >>.
&=, ^=, |=, <<=, >>=.

#include <stdio.h>

/* Variables. */
int main(){
 int i = 5, j = 8;
 int n = i + j;
 printf("Integers: %d, %d, %d\n", n, i, j);

 double x = 3.14, y = 20.2, z;
 z = y * x;
 printf("Z = %g\n", z);
 z *= 3.;
 printf("Z = %g\n", z);

 printf("i = %d\n", i);
 printf("i++ = %d\n", i++);
 printf("++i = %d\n", ++i);
 printf("i = %d\n", i);
}

Conditional statements: conditionals.c
● Conditions: i < j, m > 100;

● Conditional operators:
>, <, <=, >=, ==, !=.

● {..} group several statements
into one.

● No need for “;” after }.

● Conditions can be numerical:
TRUE is not 0;
FALSE is 0;

● Logical operators: &&, ||, !
AND: (cond1 && cond2)
OR: (cond1 || cond2)

if (condition) statement;

if (condition) {
statement1;
statement2;

}

if (condition) statement1;
else statement2;

if (condition) {
statement1;
…

} else {
statement2;
…

}

 /* known number of iterations, usually. */
 for(init; condition; iterate){
 statement;

 ...
 }

 /* loop with a pre-condition. */
 while(condition){
 statement;

 ...
 }

 /* loop with a post-condition. */
 do{
 statement;

 ...
 } while(condition);

Loops: loops.c
● The for ... loop uses 3

operators.

● The while… loop checks the
condition before entering.

● The do … while loop does at
least one iteration.
(is not in Python, but is easy
to simulate).

● Loop control statements:
continue,
break.

● puts(“abc”) == printf(“abc\n”);

Selector operator: switch.c
● switch… selector operator.

● Replaces complex if...else…
combinations.

● Not that common.

● integer values only.

● The default statement is
optional.

● break statements are
optional.

● If no break, then fall
through.

 int i;
 ……
 switch(i) {
 case 1: statement1;
 break;

 case 2:{
 statement2;
 statement3;
 } break;

 case 3: statement4;

 case 4: statement5;
 break;

 default: statement6;
 }

C arrays: arrays.c

● “[]” signify the array;

● Can be initialized in
declaration;

● Allocated and initialized at
compilation time.

● If the size is not specified, it
will be derived from the data.

● float[]; is not allowed.

● Uninitialized values are
undefined.

● Mind the limits!

 /* array declarations */
 double xx[100];
 char cc[60];
 float yy[10];

 /* array initializations */
 double zz[] = {1.0, 3.14, 2.72, 6.03e23};

 int nn[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 /* will get a warning for too much data */
 int mm[6] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 /* accessing array elements */
 for(i = 0; i < 10; i++) {
 printf("%d\n", nn[i]);
 }

C strings: strings.c

● C array is a continuous range
of memory storing uniform
data elements.

● C string is a C character array
ending with the character ‘\0’
(byte 0).

● Actual character array can be
longer.

● This is a convention on how
to treat character data.

● String formatting specification
is “%s”.

 /* array length 6 */
 char s1[] = {'s', 't', 'r', 'i', 'n', 'g'};

 /* array length 7, string length 6 */
 char s2[] = "string";

 /* array length 7, proper string length 6 */
 char s3[] = {'s', 't', 'r', 'i', 'n', 'g', '\0'};

 /* array length 100, string length 6 */
 char s4[100] = "string";

 printf("%s\n", s2);

C pointers: pointers.c
● C arrays and C pointers

have many similarities.

● C array is a constant
mapped at compilation time.

● C pointer is a variable that
can change at run time.

● Both, arrays and pointers
are memory references.

● Generalization of a Memory
Address.

● Dereference operator * and
Address operator &.

● “%p” format for printing.

 /* What is the difference? */
 char s1[] = "Array string.";
 char *s2 = "Pointer string.";

 s1 = s2; /* Can we do this? */
 s2 = s1; /* Or this? */

 double x = 3.14;
 int i = 123;

 /* What are these? */
 double *xp = &x;
 int *ip = &i;

 printf("&x = %p\n", &x);

Pointer arithmetics: pointer-math.c

● Arrays and Pointers are
memory references.

● The pointer Type define
the data size and
the stride
to get the next element.

● There is no safety check on
being within the limits.

● Iterators like xxp++.

● What is the address of an
array?

 double xx[] = {1.1, 2.2, 3.3, 4.4, 5.5};

 double *xxp = xx;
 /* or */
 double *xxp = &xx[0];

 size_t i = 3;

 /* Does this print the same values? */
 printf("%lu %g %g %g %g\n", i,
 xx[i],
 xxp[i],
 *(xx + i),
 *(xxp + i));

Complex arrays and pointers: pointers-complex.c

● Multi-D arrays must have
dimensions specified.

● Stored in a linear fashion in
memory: tables-rows-values.

● Can be initialized at
declaration.

● Types of fixed arrays, int[2].

● Pointers can be confusing.

● Operator Precedence rules.

● How about this:
char *(*(**foo [][8])())[];

 /* The dimensions must be given.*/
 double xx[2][3] = {{1.1, 2.2, 3.3},
 {4.4, 5.5, 6.6}};
 double yy[3][2] = {6.1, 5.2, 4.3, 3.4, 2.5, 1.6};

 /* Initialize to 0, only 0 works. */
 double zz[4][4] = {0.0};

 /* Array of tables of rows of elements. */
 int mmm[5][6][7];

 /* Pointer to array[2] of doubles */
 double (*yyp)[2];

 /* Array of 2 pointers to double */
 double *ppd[2];

 /* Pointer to a pointer to double */
 double **dpp;

C functions: functions.c
● Function return type.

void type is “any type”.

● List of function arguments,
with types.

● Function must be defined
before it can be used.

● Forward declaration by
function prototype.

● Argument names are not
required in the prototype.

● Prototype describes how to
use the function before it is
implemented.

/* Function defintion */
double my_compute(double x, double y) {
 return ...;
}
/* Function with no return value */
void zero_string(char txt[], int len) {

}
/* Function prototype */
int my_round(double);

/* --------------------------------- */
int main(){

}
/* implemented after main() */
int my_round(double x) {
 return ...;
}

String functions: string-funcs.c
● #include <string.h>.

● size_t is a type for length,
usually unsigned long;

● 20+ string related functions.

● NULL is an impossible pointer.

/* Length */
size_t strlen(const char *str);

/* Copy */
char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size_t n);

/* Add to end */
char *strcat(char *dest, const char *src);

/* Compare , -1, 0, 1 */
int strcmp(const char *str1, const char *str2);

/* Point to first c,
 NULL if not found. */
char *strchr(const char *str, int c);

/* Pointe to first token,
 NULL if no tokens left. */
char *strtok(char *str, const char *delim);

C structures and custom types: struct.c
● C structure is similar to

Python class, but no
methods.

● Note “;” after “}”.

● typedef statement to define
a new type name;

● Members cannot be initialized
in structure declaration.

● Can be initialized in variable
declaration.

● Member access:
v.x
vptr->x or (*vptr).x

struct vec3d {
 double x, y, z;
};
typedef struct vec3d vector3d;

typedef struct {
 double w;
 vector3d v;
} quaternion;

/* ------------------- */
int main(){
 struct vec3d v1;
 vector3d v2;
 vector3d v3 = {4, 5, 6};
 vector3d *vptr = &v3;

 quaternion q1 = {1, 2, 3, 4};

Passing arguments to functions: func-args.c
● Single value arguments:

Values and Pointers

● Always by value.

● Small input values by value;

● Values to be changed are
passed by a pointer.

● Sequences are passed by
pointer.

● Input pointers as const.

● Large input structures can be
passed by a pointer.

● xx[] argument == *xx

/* Single value arguments */
void function1(double x, double *y, const double *z){

}
/* Arrays or strings */
void function2(char xx[], const char yy[]) {

}
/* Pointers */
void function3(char *xp, const char *yp) {

}
/* --- */
int main(){
 double v = 100.0;
 function1(v, &v, &v);

 char vv[] = "argument string";
 function2(vv, vv);
 function3(vv, vv);
}

Type casting and conversions: casting.c
● Type cast.

● Implicit conversion:
char → int → unsigned int →
→ float → double.

● Data loss is possible:
sign can be lost,
overflow can occur.

● Explicit conversion:
(type) value.

●

 int i, n;
 double x;

 i = 2.2; /* Compilation Warning */
 n = 10;

 /* Lost information */
 x = i / n;

 /* No lost information */
 x = (double)i / n;

 /* access same buffer as (int) and (char) */
 int *ibuf[100];
 char *cbuf = (char *)ibuf;

Memory allocation: memory.c
● Arrays are allocated at the

compilation time statically.

● Pointers can point to memory
allocated dynamically at run
time.

● Arrays cannot be freed.

● Allocated memory must be
freed.

● malloc(...) returns a pointer to
(void *) that needs to be cast.

● sizeof(void) == 1.

#include <stdlib.h>
...
 int n = 10;

 /* Allocate memory at compilation time. */
 int buf1[n];

 /* Allocate memory at run time. */
 int *buf2 = (int *)malloc(sizeof(int) * n);

 double *buf3 = (double*)malloc(sizeof(double)*n);

 ... use the buffers ...

 /* Free allocated memory. */
 free(buf2);
 free(buf3);

Command line arguments: args.c
● T

● Optional main(...) arguments:
argc -- argument count, int;
argv -- argument values,
 array of pointers.

● Argument[0] is always the
command itself.

● Return value is the shell exit
code, $?.

● Normal return value is 0.

/* Getting Command Line Arguments */

int main(int argc, char *argv[]){

 printf("Number of arguments: %d\n", argc);

 printf("First argument: %s\n", argv[0]);

 /* Exit code goes into $? env variable. */
 return argc;
}

Reading a file into a buffer: file-read.c
● The size of the data is not

known at compilation time.

● Storage array has to be
allocated at run time.

● Many ways to do it.

● Find the size of the file.

● file access functions:
○ fread(...) / fwrite(...)

○ fopen(...) / fclose(...)

○ fseek(...) / ftell(...)

#include <stdlib.h>
......
 FILE *fptr = fopen("vars.c", "r");

 /* Determine the size of the file. */
 size_t fsize = ...;

 /* Allocate memory for the data. */
 char *data = (char *)malloc(sizeof(char) * fsize);

 /* Read the file into the allocated buffer. */
 fread(data, sizeof(char), fsize, fptr);
 fclose(fptr);

 /* Free the memory. */
 free(data);
}

Header .h and source .c files
1. Have all the code inside one file.
main_full.c
$ gcc main_full.c -o main_full.x
$./main_full.x

2. Include all the parts into the main source file.
main_c.c
function.c
$ gcc main_c.c -o main_c.x
$./main_c.x

3. Put forward declarations into header files.
Compile each source file separately.
main_h.c
function.h
function.c
$ gcc -c main_h.c -o main_h.o
$ gcc -c function.c -o function.o
$ gcc function.o main_h.o -o main_h.x
$./main_h.x

● Why .h header files?

● Three options:
○ Have all the code in one file;

○ Split the code but combine into
one file with #include directives.

○ Split the files and compile them
separately.
This requires header files.

● Mostly a matter of
convenience. NO MAGIC.

● Header files explain how to
use functions without the
actual implementation details.

Conclusions for C introduction:
Today we have

● Learnt some historical facts about C language.

● Discussed the differences between compilers and interpreters.

● Looked into the details of compilation process.

● Written our first C program.

● Found out how to work with C arrays and strings.

● Talked about C pointers and how to use them.

● Learnt about manual memory management in C.

● Tried getting command line arguments as well as file reading / writing.

Part 2:
C++ for Python programmers

C++ language facts:
● C++ is a general-purpose, object-oriented programming language.

● Bjarne Stroustrup at Bell Labs, in 1979, introduced the C-With-Classes, and the
C++ in 1983.

● The name of C++ signifies the evolutionary nature of the changes from C.

● C++ introduces Object-Oriented Programming, not present in C.

● C++ supports the four primary features of OOP: encapsulation, polymorphism,
abstraction, and inheritance.

● C++ got the OOP features from Simula67 Programming language.

● Not purely object oriented: one can write C++ code without using classes and it will
compile.

● There are 84 keywords in C++.

● Several C++ standards: C++98, C++11, C++14, C++17,...

C++ vs C comparison:
● C++ has STL that makes it very similar to Python (in a loose sense).

● C is very different from Python.

● Pure C++ is not much better than C.

● Linus Torvalds (Linux father) likes C better.

● C++ is a multi-paradigm language, it allows structural and / or OO programming.

● It is much easier to write a slow code in C++.

● C is a subset of C++ but C++ is a very different language.

● C++ is better for large projects than C due to namespace separations and OO
features.

● C++ is much more complex language than C.
Number of keywords: C (32), Python (33), C++ (93).

Hello World C++ example: hello.cpp, hello2.cpp
● The original C version

works too;

● <cstdio> is a C++ version
of C <stdio.h> header file.

● New comment “//”.

● C++ style shows:
○ cout output stream object;

○ namespace std;

○ << operator;

○ endl end of line manipulator.

● Compiler: g++

#include <cstdio>

// Our first C++ program. C style.
int main(){
 printf("Hello World!\n");
}

#include <iostream>
using namespace std;

// Our first C++ program. C++ style.
int main(){
 cout << "Hello World!" << endl;
}

C++ adds Object Oriented ideas to C
● Encapsulation:

keep the data and the functions together.
○ C++ classes.

● Abstraction:
exposing only essential information and hiding the details.

○ C++ classes.
○ Public / private memberships.
○ Separating interface from implementation.

● Polymorphism:
same method behaves differently when working on different data.

○ Compilation time polymorphism based on argument types.
○ Virtual functions.

● Inheritance:
derived class inherits all the features from the base class and has its own.

○ Derived classes.
○ Multiple inheritance.

C++ classes: classes.cpp

● Extension of C structure.

● “;” after “}” in class definition.

● Basic types are classes now.

● Initialization by constructors.

● New type (class) of bool.

● Constructors:
○ Default: v();
○ Copy: v(v2);
○ Non default: v(....);

● Polymorphism:
○ ostream operator <<;
○ constructors.

● Member initializer list.

class vector3d {
public:
 double x, y, z;
};

int main(){
 double x, y(2.72), z = 3.14;

 int i(0), j(10), k;
 bool condition(true), flag(false);

 vector3d v1;
 vector3d v2(5.5);
 vector3d v3(1.1, 2.2, 3.3);
 vector3d v4(v2);

 v1 = v3;
}

C++ classes, abstraction: private.cpp

● Hide the internal details:
separate interface from
implementation.

● namespaces help avoid
naming clashes.

● private vs public.

● _x to remind that it is private.

● Access methods: set() and
get().

● Hidden implementation
allows changes when needed.

● const keyword.

class vector3d {
private:
 double _x, _y, _z;

public:
 vector3d() {}
 vector3d(double v): _x(v), _y(v), _z(v) {}
 vector3d(double x, double y, double z):
 _x(vx), _y(vy), _z(vz) {}

 // Access methods:
 double x() const { return _x; }
 ...
 void x(double v) { _x = v; }
 ...
};
} // end of namespace my_classes.

C++ classes, encapsulation: methods.cpp
● Keeping functions with the

data.

● Smart data concept.

● class function is a method.

● New data types, reference:
pass a pointer but use as a
value.

● const reference.

● const methods and
arguments help the compiler
to help us.

● this pointer to itself.

● <cmath> header file.

class vector3d {
private:
 double _x, _y, _z;

public:
 ...
 double dot(const vector3d& v2) const {
 return _x * v2._x + _y * v2._y + _z * v2._z; }

 double abs() const {
 return sqrt(dot(*this)); }

 void scale(double c) {
 _x *= c; _y *= c; _z *= c; }

 void normalize() {
 double c = 1.0 / abs(); scale(c); }
};

C++ references: references.cpp ● C function arguments are
always by value.

● We have to explicit data
reference types, pointers, to
pass them by value.

● C++ adds arguments by
reference.

● References are like
dereferenced pointers that
cannot be reassigned
(variable nicknames).

● Much safer than pointers.

● Polymorphic functions
conflict.

● Like mutables in Python.

void double_that(double y) { y *= 2.; } // Value

void double_that(double *yp) { *yp *= 2.; } // Pointer

void double_that_ref(double& y) { y *= 2.; } // Refer.

int main(){
 double x(4.0);

 // Does not do anything.
 double_that(x);

 // Does work.
 double_that(&x);

 // Works too.
 double_that_ref(x);
}

C++ classes, polymorphism: overloading.cpp

● Overloading is a device for
polymorphic behaviour.

● operator overloading.

● Most operators can be
overloaded.

● this is a pointer to itself.

● some operators can be a
method and/or a function.

int main(){
 vector3d v1(1), v2(2), v3(3);

 cout << "v1 = " << v1 << endl;

 vector3d v4;
 v4 = v1 + v3;

 cout << "v4 = " << v4 << endl;
 cout << "-v4 = " << -v4 << endl;
 cout << endl;

 v4 -= v1;

 v4 = v1 * 2;
 v4 = 2.0 * v4;

 cout << "v4 = " << v4 << endl;
}

C++ Standard Template Library (STL)
● The Standard Template Library (STL) is a set of C++ template classes to provide

common programming data structures and functions.

● It is a library of container classes, algorithms, and iterators.

● Makes all the difference.

● Helps to avoid explicit memory management.

What is inside:

● Containers: string, list, vector, array, map, set, valarray, pair, etc.

● Iterators: classes to point at the memory addresses in containers.

● Algorithms: sort, reverse, min/max, accumulate, search, transform.

C++ templates: template.cpp

● Mechanism to avoid rewriting
many similar overloaded
functions.

● Exceptions can be specified
(specialization).

● Convenient for container
classes or general
algorithms.

● Templating is done at the
compilation time.

// Overloaded functions.
int half(int x) { return x / 2; }
double half(double x) { return x / 2; }

// Function template.
template<class cType> cType half(const cType& x){
 return x / cType(2); }

// Template specialization.
template<> string half<string>(const string& x) {
 return x.substr(0, x.length() / 2); }

// Class template.
template<class cType> class array10 {
private:
 cType xx[10];
public:
 cType& operator[](int i) { return xx[i]; }
};

STL vector: vector.cpp
● vector is an equivalent of

Python list.

● Workhorse container.

● Knows its size;

● Can grow / shrink dynamically.

● Can be appended and elements
can be inserted.

● Linear continuous data storage.

● Constant time access.

● May require re-allocation of
storage buffers when
appending data.

● Iterators are smart pointers.

#include<vector>
using namespace std;
 vector<int> ii, jj(10), kk(10, 1);

 for(int i = 0; i < jj.size(); i++) jj[i] = i;

 ii = jj;
 int m = ii[10];

 int n = ii.size();
 bool flag = ii.empty(); // Yes / No

 ii.push_back(m); // Append
 ii.push_back(n);

 ii.insert(ii.begin(), m); // Insert
 ii.pop_back(); // Remove last

 ii.erase(ii.begin() + 5); // Delete
 ii.clear();

STL strings: string.cpp

● Sequence of characters.

● Similar to vector<char>.

● Replacement for Python
string class.

● Not the same as C strings!

● Methods are limited in
comparison with Python
class.

● Use .c_str() method to
generate a C-string.

#include<string>
using namespace std;
...
 char s[] = "C string";
 string s1;
 string s2("string 2");
 string s3(s);

 s1 = s2 + " and " + s3;

 int n = s1.size();
 int m = s1.length();

 s1 += " / Some more text";

 int pos = s1.find_first_of("/");
 int len = s1.size() - pos;

 string s4 = s1.substr(pos, len);

STL map and iterators: map.cpp
● Replacement for Python

dictionaries.

● Good for indices, but not as
fast as vectors for numerical
keys.

● Have to use iterators to
iterate over maps or point to
an element.

● Attempt to access a key that is
not in the map creates that
key.

● Uses an pair<key,value>
container class inside.

#include<map>
map<string,int> dict; // Declaration.

dict["One"] = 1;
dict["Two"] = 2;
...
int x = dict["Four"]; // Key to Value.

int y = dict["Seven"]; // Key is not there.

int c = dict.count("Two"); // Either 0 or 1.

// Map iterator class is also defined.
map<string,int>::iterator it = dict.find("Two");

string k = it->first; // The key is first.
int value = it->second; // The value is second.

int n = dict.size(); // Number of elements.
dict.clear();

STL algorithms: algo.cpp

● Collection of functions that
work on sequences (mostly).

● Counting, searching, testing.

● Copying, replacing, removing.

● Transforming, generating.

● Partitioning.

● Binary search.

● Min / Max.

● Custom classes may require
additional functions
(comparison, etc.).

#include<algorithm>

 vector<double> values;
 ...

 // Sorting.
 sort(values.begin(), values.end());

 // Reversing.
 reverse(values.begin(), values.end());

 // Min / Max returns an iterator, not the value.
 vector<double>::iterator it;
 it = max_element(values.begin(), values.end());
 it = min_element(values.begin(), values.end());

 // Min / Max of two values.
 double minx = min(x1, x2);
 double maxx = max(x1, x2);

C++ binary file reading: files.cpp ● Input File Stream file class,
ifstream.

● Somewhat similar to the C
version:

○ Find the file size;

○ Allocate a buffer;

○ Read the file into the buffer.

● We have to check if the file
has been opened
successfully.

● Uses ios::flags to control
the file mode.

● new …[] and delete[] are
C++ version of malloc()
and free().

#include <fstream>
using namespace std;
...
 ifstream file("hello.cpp",
 ios::in|ios::binary|ios::ate);

 // Find out the size of the file.
 streampos size = file.tellg();

 // Allocate memory for the entire file.
 char *buffer = new char[size];

 // Rewind the file to the beginning and read it.
 file.seekg(0, ios::beg);
 file.read(buffer, size);

 // Do not need it anymore.
 file.close();

C++ exceptions: exceptions.cpp
● C++ adds exception handling.

● try {...} catch (type)
{...} construct.

● throw value: type of the
value matches
catch(value).

● #include<exceptions>
defines many exception
classes thrown by STL
functions and methods.

 ...
 try {
 throw string("Help!");
 }
 catch(int ex){
 cout << "Int exception (" << ex << ")"
 << endl;
 }
 catch(double ex){
 cout << "Double exception (" << ex << ")"
 << endl;
 }
 catch(const string& ex){
 cout << "String exception (" << ex << ")"
 << endl;
 }
 catch(...) {
 cout << "Unknown exception (...)" << endl;
 }
 ...

Finding information:
● CPlusPlus.Com, Excellent source of information on C++ and STL:

http://www.cplusplus.com

● CppReference.Com:
https://cppreference.com

● StackOverflow, a good resource for programming questions:
https://stackoverflow.com

● Google it:
“How to handle exceptions in C++?”
“How to read a text file in C++?”
“How to write a binary data file in C++?”

● The C++ Programming Language (4th Edition), Bjarne Stroustrup.

http://www.cplusplus.com
https://cppreference.com
https://stackoverflow.com

Conclusions for the C++ part:
● C++ uses C syntax for its own purpose.

● C++ clearly separates the programer from data / memory details by using
smart data objects.

● C++ is a very different language from C.

● C++ is a complex language.

● C++ together with the STL can be a good additional tool for Python
programmers.

Thank you.

Questions?

