Y, R

C/G++for Python programmers

- Dmitri Rozmanov

W.estGrid HVPC summer school at UefC 2019



Information:

e Coffee break: 10:30 -- 10:45 in the atrium.

e Shared Google Doc: hitp://bit.ly/UofC-C-Cpp

e Logging to cluster:
$ ssh username@arc.ucalgary.ca

e Interactive node request command:
$ salloc -t 4:00:00 -N 1 -n 1 -c¢c 1 --mem=1gb
-p single --reservation=ss2019


http://bit.ly/UofC-C-Cpp

Introduction

Many use some kind of programming environment in their work. Most of the time it
is some interpreted language with a large set of scientific libraries, such as

e Python,
e GNUR,
e Matlab,
e Perl.

However, it is always a good idea to have a backup plan, when there is a need for a
brute force computational power. In such a case a good general compiled
language can be a good asset to have in the tool box.

o C/C++,
e Fortran 77 /90 /95,
e Julia, Go, Rust, Swift (?77)
can give you the performance of this kind.



Today we will

e Learn about compiled languages and how they compare with interpreted
programming languages.

e Understand the details of compilation process.

e Do an overview of C language and go over some examples.

e Do an overview of C++ language and compare it to C.

e Will look at the features of C++ that make it helpful for Python programmers.
e Will explore some part of C++ Standard Template Library (STL).

e \Will make conclusions.



Development environment

e Bash command line shell:
$ ssh username@arc.ucalgary.ca

e Python 2.7 and GCC 4.8.5 (default):
$ module load python/anaconda2-2018.12

e GNU Screen shell session manager:
$ screen

e Text editor: vi, vim, nano, mcedit, emacs.
$ vim my code.py
$ mcedit my code.py



GNU Screen

Screen is a full-screen window manager for several interactive shells.

e Quick switching between the script editing and running windows;
e Session will persist if you close the lid of your laptop.
But you have to reconnect.

Minimal useful commands: $ man screen

Create a new window: C-a ¢

Close a window: C-d

Detach screen from the this terminal: C-a d
Switch to another window: C-a “

Toggle between two recent windows: C-a C-a
Reconnect; $ screen -r



Part 1:
Introduction to C
for Python programmers



Compiled vs Interpreted Languages:

Compiled language:

e uses a compiler (translator) to translate one language into another in an off-line
mode, before execution.
Saves a compiled version of the code in the CPU native language in binary format.
Computations can be better optimized during dedicated translation stage.

Interpreted language:

e uses an interpreter to translate one language into another in an on-line mode,
during the run time.

e Stores the program in the original format.

e Run time translation gives more flexibility. For example, the program can be easily
modified during run time in response to the current conditions.



Compiled vs Interpreted Languages (cont

J:

Compiled

Interpreted

Examples

C, C++, Fortran, Pascal, Rust,
Go,

Perl, Python, Ruby, R, Bash,
PHP, Matlab

Low level programming (OS),
Hardware access (drivers),
Multi-use code,

High performance libraries.

Development | More difficult Easier
Speed Faster Slower (x100 times)
Applications | Maximum performance, Prototyping,

Complex “glue” coding,
Single use coding,
Interactive work.




C language facts:

e C is the longest existing programming language in the programming history.
e C is a high-level and general-purpose programming language.

e C was developed at Bell Labs by Dennis Ritchie for the Unix Operating System in
the early 1970s.

e \Was developed as next after the B language, that is what C stands for.

e Most popular Linux Kernel and most UNIX utilities, what you would call the
operating system are written in C.

e C is not an object oriented language

e C is a structured programming language which allows a complex program to be
broken into simpler programs called functions.

e Dennis Ritchie and Kerninghem wrote a book “The C Programming Language”.

e C is the Latin of the programming world, it is the basis for C++, Java, Go, C#,
Python, PHP, Perl, etc.



More C language facts:

e Fixed number of keywords:
ANSI C has 32 keywords, C99 adds 5 and C11 adds 7.

e 45 |ogical and mathematical operators in 8 groups.

e Bit manipulators for low level programming.

e Function returns only one value and it may be ignored if not needed.
e Typing is static. All data has type but may be implicitly converted.

e Basic form of modularity: files may be separately compiled and linked.

e Control of function and object visibility to other files via extern and static attributes.



Hello World example: hello.c

#include <stdio.h>

/* Our first program. */

int main() {
printf ("Hello World!'\n") ;
return O;

The main() function;

The body is in {...}.

“;” at the end of a statement.
Type of the return value.

#include is similar to import,
provides more functions.

printf is a formatted print.

“\n” is the end of line
character.

[* ... *Iis a C-style comment.

Formatting does not matter.



Compiling hello.c

Free compiler suite:
GCC - GNU C Compiler.

Compilation and run-time
errors.

Compilation warnings.

Run-time error diagnostics
is minimal!

If error, no executable is
produced.

Make sure there are no
warnings either.

$ man gcc (on Unix).

$ gcc --version

Apple LLVM version 10.0.1 (clang-1001.0.46.4)

$ gcc hello.c

$ 1s -1 a.out
-rwxr-xr-x 1 rozmanov staff 8432

$ ./a.out
Hello World!

$ gcc hello.c -o hello.x

$ 1s -1 hello.x
-rwxr-xr-x 1 rozmanov staff 8432

$ ./hello.x
Hello World!

6 May 10:15 a.out

6 May 10:16 hello.x



C preprocessor, cpp.

#include <stdio.h>
#include "my functions.c"

##define MAXN 100
#define OS WIN1O

#if OS == MACOS
// some code here..
function_macos (MAXN)

#elif OS == LINUX
// some other code here..
function_linux (MAXN)

#telse
// some third code here..

function_windows (MAXN)

#endif

Processes the source code
before compilation;

Uses #command like
instructions without “;” at the
end.

A very non-C style,
feels like a hack.

Includes and Macros.
Conditional compilation.

Compile time computations
through macros.

Text modifier!



What happens during compilation?

e Preprocessor, cpp, includes
all source and header files,
replaces macros.

e C compiler, gcc, produces

CPU specific assembler code.

e Assembler, as, compiles the
code into a binary object file.

e Linker, Id, links the object file
with required libraries to
produce the final binary code.

e Done.

# 1. Preprocess the source code.
$ cpp hello.c -o hello pp.c

# 2. Translate C code to Assembler code.
$ gcc -S hello pp.c -o hello.asm

3. Compile Assembler code to an Object file.
as hello.asm -o hello.o

W 3

# 4. Link the Object file with system libs.
$ 1d ... hello.o -0 hello.x ...

# 4. Simpler command:
$ gcc hello.o -o hello.x

# 5. Compilation is done. Run it.
$ ./hello.x
Hello World!



Variable declaration:

#include <stdio.h>

int main () {
int 1i;

int n = 0;

vars.Cc

printf ("Integers: %d, %d\n", i, n);

unsigned int k, 1 =

0;

printf ("Unsigned integers: %u, %u\n", k, 1);

float x = 5.0;
double y = x, z;

printf ("Real numbers: %f, %e, %g\n", x, y, z);

char a = 'a';

char b = '"!'', ¢ = '?"';

printf ("Characters:

%c, %c¢, %c\n", a, b, c);

Variables must be declared
before they can be used.

int, unsigned int,
float, double, char.

Special int type for sizes:
size_t = unsigned long int.

Can be initialized in the
declaration statement.

Undefined if not initialized.

Formatting characters:
%d, %u, °/of, %e, %g, %c.

See man printf for more.



Operators in C: operators.c

finclude <stdioc.h> e Math binary operators:
* 0
/* Variables. */ +, _’/’ 3 %o.
ot main 04 | e Assignment operators:
int i =5, j=8; . 0
int n = i + j; =, +=, -=, *=, /=, %~=.

printf ("Integers: %d, %d, %d\n", n, i, j);
e |[ncrement operators:

double x = 3.14, y = 20.2, z; ++X, Xt++, --X, X--.
z =y * x;

printf("z = %g\n", z); e Bitwise operators:
z *= 3.7 & M|, ~, <<, >>.

rintf ("2 = %g\n", z);
P ( g ) = A—|_ <<=, >>=,
printf("i = %d\n", i);
printf ("i++ $d\n", i++);
printf ("++i $d\n", ++i);
printf ("i $d\n", 1i);



Conditional statements

if (condition) statement;

if (condition) {
statementl;
statement?2;

}

: conditionals.c

if (condition) statementl;

else statement2;

if (condition) {
statementl;

} else {
statement2;

Conditions: i <j, m > 100;

Conditional operators:
> <, <=

H )

{..} group several statements
into one.

No need for “;” after }.

Conditions can be numerical:
TRUE is not O;
FALSE is O;

Logical operators: &&, ||, !
AND: ( cond1 && cond2 )
OR: (cond1 || cond2 )



Loops: loops.c

/* known number of iterations, usually.

for(init; condition; iterate) {
statement;

}

/* loop with a pre-condition. */
while (condition) {
statement;

}
/* loop with a post-condition. */
do{

statement;

} while(condition) ;

*/

The for ... loop uses 3
operators.

The while... loop checks the
condition before entering.

The do ... while loop does at
least one iteration.

(is not in Python, but is easy
to simulate).

Loop control statements:
continue,
break.

puts(“abc”) == printf(“abc\n”);



Selector operator: switch.c

e switch... selector operator.

switch (i) { ° Repla_ces_complex if...else...
case 1: statementl; combinations.

break;

e Not that common.

case 2:{ ;
statement2; e integer values only.
statement3; )
Dl e T[he default statement is

optional.
case 3: statement4;

e break statements are

case 4: statement5; Optional,
break;

e |f no break, then fall
through.

default: statementé6;



C arrays: arrays.c

o “[]” signify the array;

/* array declarations */
double xx[100];
char cc[60];

e Can be initialized in

float yy[10]; declaration;

[* arzay initializations */ e Allocated and initialized at
double zz[] = {1.0, 3.14, 2.72, 6.03e23}; compilation time.

int nn[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; e If the size is not specified, it

will be derived from the data.

/* will get a warning for too much data */

int mm[6] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}; o float[]; is not allowed.
/* accessing array elements */ e Uninitialized values are
for(i = 0; i < 10; i++) { undefined

printf ("%d\n", nn[i]);
} e Mind the limits!



C strings: strings.c

/* array length 6 */

char sl[] — {|s|, 't'[ 'r|, 'i'[ |n|, 'g'};

/* array length 7, string length 6 */
char s2[] = "string";

/* array length 7, proper string length 6 */

char s3[] — {|s|, 't'[ 'r|, 'i'[ |n|, 'g'[

/* array length 100, string length 6 */
char s4[100] = "string";

printf ("%$s\n", s2);

'\0'},’

C array is a continuous range
of memory storing uniform
data elements.

C string is a C character array
ending with the character \0’
(byte 0).

Actual character array can be
longer.

This is a convention on how
to treat character data.

String formatting specification
iS “%s”.



C pointers: pointers.c

e C arrays and C pointers

/* What is the difference? */ have many similarities.

char sl[] = "Array string."; ;

char *s2 = "Pointer string."; nd C array Is a constant
mapped at compilation time.

sl = s2; /* Can we do this? */ o C pOinter is a variable that

s2 = sl; /* Or this? =/ can change at run time.

e Both, arrays and pointers

double x = 3.14;
are memory references.

int i = 123;
3 s, e e € e Generalization of a Memory
double *xp = &x; Address.

int *ip = &i;

e Dereference operator * and
printf ("&x = %p\n", &x); Address operator &.

e “%p” format for printing.



Pointer arithmetics: pointer-math.c

e Arrays and Pointers are
memory references.

double xx][] {1.1, 2.2, 3.3, 4.4, 5.5};

double *xxp XX;

e The pointer Type define

/* or */ .
double *xxp = &xx[0]; the data size and
the stride
: . to get the next element.
size t i = 3;

. . e There is no safety check on
/* Does this print the same values? */ . Trilasa . .
printf("%$lu %g %g %g %g\n", i, belng within the limits.
xx[1i],
xxp[i],
*(xx + i),

*(xxp + 1)) ;

e lterators like xxp++.

e \What is the address of an
array?



Complex arrays and pointers: pointers-complex.c

/* The dimensions must be given.*/ P MUltl-D arrayS mUSt have

double xx[2][3] = {{1.1, 2.2, 3.3}, . 1 S
(4.4, 5.5, 6.6}}; dimensions specified.

double yy[3]1[2] = {6.1, 5.2, 4.3, 3.4, 2.5, 1.6}; g i

/* Initialize to 0, only 0 works. */ memory: tables-rows-values.
double zz[4][4] = {0.0}; =Sy

e Can be initialized at
/* Array of tables of rows of elements. */ deC|aratiOn_
int mmm[5] [6] [7];

e Types of fixed arrays, int[2].
/* Pointer to array[2] of doubles */
double (*yyp) [2]; e Pointers can be confusing.

/* Array of 2 pointers to double */ e Operator Precedence rules.

double *ppd[2]:; 2
e How about this:

/* Pointer to a pointer to double */ char *(*(**foo [][8]) ()) []1-
double **dpp;



C functions: functions.c

/* Function defintion */

double my compute (double x, double y) {
return ...;

}

/* Function with no return wvalue */

void zero_string(char txt[], int len) {

}
/* Function prototype */
int my round(double) ;

T */
int main () {

/* implemented after main() */
int my round(double x) {
return ... ;

}

Function return type.

void type is “any type”.
List of function arguments,
with types.

Function must be defined
before it can be used.

Forward declaration by
function prototype.

Argument names are not
required in the prototype.

Prototype describes how to
use the function before it is
implemented.



String functions: string-funcs.c

/* Length */
size_t strlen(const char *str);

/* Copy */
char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size t n);

/* Add to end */
char *strcat(char *dest, const char *src);

/* Compare , -1, 0, 1 */
int strcmp (const char *strl, const char *str2);

/* Point to first c,
NULL if not found. */
char *strchr (const char *str, int c);

/* Pointe to first token,
NULL if no tokens left. */
char *strtok(char *str, const char *delim);

#include <string.h>.

size tis a type for length,
usually unsigned long;

20+ string related functions.

NULL is an impossible pointer.



C structures and custom types: struct.c

struct vec3d {
double x, y, z;
};
typedef struct vec3d vector3d;

typedef struct {
double w;
vector3d v;
} quaternion;

G e e e e e */
int main () {
struct vec3d vl;
vector3d v2;
vector3d v3 = {4, 5, 6};
vector3d *vptr = &v3;

quaternion ql = {1, 2, 3, 4};

C structure is similar to
Python class, but no
methods.

Note “;” after “}”.

typedef statement to define
a new type name;

Members cannot be initialized
in structure declaration.

Can be initialized in variable
declaration.

Member access:
V.X
vptr->x or (*vptr).x



Passing arguments to functions: func-args.c

/* Single value arguments */
void functionl (double x, double *y, const double *z) {

}

/* Arrays or strings */
void function2 (char xx[], const char yy[]) {

}

/* Pointers */

void function3(char *xp, const char *yp) ({

}
T */
int main () {

double v = 100.0;

functionl (v, &v, &v);

char vv[] = "argument string";
function2 (vv, wvv);
function3 (vv, vv);

Single value arguments:
Values and Pointers

Always by value.
Small input values by value;

Values to be changed are
passed by a pointer.

Sequences are passed by
pointer.

Input pointers as const.

Large input structures can be
passed by a pointer.

xX[] argument == *xx



Type casting and conversions: casting.c

e Type cast.

int 1, n;

e Implicit conversion:

double x; ) : 5
char — int — unsigned int —

i=2.2; /* Compilation Warning */ — float — double.

n = 10;

e Data loss is possible:
sign can be lost,
overflow can occuir.

/* Lost information */
x=1i / n;

/* No lost information */

s (e, [ g e Explicit conversion:
(type) value.

/* access same buffer as (int) and (char) */
int *ibuf[100]; ®
char *cbuf = (char *)ibuf;



Memory allocation: memory.c

#include <stdlib.h> e Arrays are allocated at the
compilation time statically.
int n = 10; . e
e Pointers can point to memory

/* Allocate memory at compilation time. */ allocated dynamica”y at run
int bufl[n]; tinne

/* Allocate memory at run time. */
int *buf2 = (int *)malloc(sizeof (int) * n);

e Arrays cannot be freed.

e Allocated memory must be

double *buf3 = (double*)malloc(sizeof (double) *n) ; f d
reed.

. use the buffers ...

e malloc(...) returns a pointer to

/* Free allocated memory. */ (VOid *) that needs to be cast.
free (buf2) ; . ~
free (buf3) ; o SlZGOf(VO|d) == .



Command line arguments: args.c

/* Getting Command Line Arguments */

int main(int argc, char *argv[]) {
printf ("Number of arguments: %d\n", argc);
printf ("First argument: %s\n", argv[0]);

/* Exit code goes into $? env variable. */
return argc;

T

Optional main(...) arguments:

argc -- argument count, int;

argv -- argument values,
array of pointers.

Argument[0] is always the
command itself.

Return value is the shell exit
code, $7.

Normal return value is 0.



Reading a file into a buffer: file-read.c

#include <stdlib.h>

FILE *fptr = fopen("vars.c", "r");

/* Determine the size of the file. */

size t fsize = ...;

/* Allocate memory for the data. */
char *data = (char *)malloc(sizeof (char) * fsize);

/* Read the file into the allocated buffer. */
fread(data, sizeof (char), fsize, fptr);
fclose (fptr) ;

/* Free the memory. */
free (data) ;

The size of the data is not
known at compilation time.

Storage array has to be
allocated at run time.

Many ways to do it.
Find the size of the file.

file access functions:
o fread(...) / fwrite(...)
o fopen(...) / fclose(...)

o fseek(...) / ftell(...)



Header .h and source .c files

o Why h header f||eS? # 1. Have all the code inside one file.
- # main full.c
e Three options: $ gcc main full.c -o main full.x
$ ./main full.x
o Have all the code in one file;
# 2. Include all the parts into the main source file.
o Split the code but combine into | # main c.c
one file with #include directives. | # function.c
$ gcc main c.c -o main c.x
o Split the files and compile them | $ ./main c.x

separately.

This requires header files. 3. Put forward declarations into header files.

Compile each source file separately.

main h.c
function.h
function.c

gcc -c¢c main h.c -o main h.o

gcc -c¢ function.c -o function.o

gcc function.o main h.o -o main h.x

./main h.x

e Mostly a matter of
convenience. NO MAGIC.

e Header files explain how to
use functions without the
actual implementation details.

WVr U Ur Ur 3 I H H



Conclusions for C introduction:

Today we have
e Learnt some historical facts about C language.
e Discussed the differences between compilers and interpreters.
e Looked into the details of compilation process.
e \Written our first C program.
e Found out how to work with C arrays and strings.
e Talked about C pointers and how to use them.
e [earnt about manual memory management in C.

e Tried getting command line arguments as well as file reading / writing.



Part 2:
C++ for Python programmers



C++ language facts:

e (C++is a general-purpose, object-oriented programming language.

e Bjarne Stroustrup at Bell Labs, in 1979, introduced the C-With-Classes, and the
C++in 1983.

e The name of C++ signifies the evolutionary nature of the changes from C.
e C++ introduces Object-Oriented Programming, not present in C.

e (C++ supports the four primary features of OOP: encapsulation, polymorphism,
abstraction, and inheritance.

e (C++ got the OOP features from Simula67 Programming language.

e Not purely object oriented: one can write C++ code without using classes and it will
compile.

e There are 84 keywords in C++.
e Several C++ standards: C++98, C++11, C++14, C++17,...



C++ vs G comparison:

e C++ has STL that makes it very similar to Python (in a loose sense).

e C is very different from Python.

e Pure C++ is not much better than C.

e Linus Torvalds (Linux father) likes C better.

e C++ is a multi-paradigm language, it allows structural and / or OO programming.
e |tis much easier to write a slow code in C++.

e C is asubset of C++ but C++ is a very different language.

e C++ is better for large projects than C due to namespace separations and OO
features.

e C++is much more complex language than C.
Number of keywords: C (32), Python (33), C++ (93).



Hello World C++ example: hello.cpp, hello2.cpp

#include <cstdio> e The original C version
works too;

// Our first C++ program. C style. . . ]
or e preg S e <cstdio> is a C++ version

of C <stdio.h> header file.

int main () {
printf ("Hello World!\n");

} e New comment “//”.

e C++ style shows:

#include <iostream> o cout output stream object;

using namespace std; o namespace std;
o << operator;

// Our first C++ program. C++ style.

e O o endl end of line manipulator.

cout << "Hello World!" << endl; P Comp”er: gt++



C++ adds Object Oriented ideas to C

e Encapsulation:

keep the data and the functions together.
o C++ classes.

e Abstraction:

exposing only essential information and hiding the details.

o C++ classes.
o Public / private memberships.
o Separating interface from implementation.

e Polymorphism:

same method behaves differently when working on different data.
o Compilation time polymorphism based on argument types.
o Virtual functions.

e Inheritance:

derived class inherits all the features from the base class and has its own.

o Derived classes.
o  Multiple inheritance.



C++ classes: classes.cpp

class vector3d {
public:

double x, y, z;
};

int main () {
double x, y(2.72), z = 3.14;

int 1(0), 3j(10), k;
bool condition(true), flag(false);

vector3d vl;

vector3d v2(5.5) ;

vector3d v3(1.1, 2.2, 3.3);
vector3d v4 (v2);

vl = v3;

Extension of C structure.

“;” after “}’ in class definition.
Basic types are classes now.
Initialization by constructors.
New type (class) of bool.

Constructors:
o Default: v();
o Copy: v(v2);
o Non default: v(....);

Polymorphism:
o ostream operator <<;
o constructors.

Member initializer list.



C++ classes, abstraction: private.cpp

class vector3d e Hide the internal details:

private: separate interface from
double _x, _y, _z; implementation.

public: e namespaces help avoid

vector3d() {}

vector3d(double v): x(v), _y(v), _z(v) {}

vector3d (double x, double y, double z):
_x(vx), _y(vy), _z(vz) {}

naming clashes.
e private vs public.

e Xxtoremind thatitis private.

// Access methods:

gdoubleRx RcoRSE (Rxe tnIC £/ e Access methods: set() and
void x(double v) { x = v; } get()

} e Hidden implementation

} // end of namespace my classes. allows changes when needed.

e const keyword.



C++ classes, encapsulation: methods.cpp

class vector3d {

private:

double x, 'y, _z;

public:

double dot(const vector3d& v2) const ({

return x * v2._x + vy * v2._y + _z * v2._z;

double abs () const {
return sqrt(dot(*this)); }

void scale (double c) {

X *=¢; y *=c¢c; _z *=c¢c; }

void normalize () ({
double ¢ = 1.0 / abs(); scale(c); }

}

Keeping functions with the
data.

Smart data concept.
class function is a method.

New data types, reference:
pass a pointer but use as a
value.

const reference.

const methods and
arguments help the compiler
to help us.

this pointer to itself.

<cmath> header file.



C++ references: references.cpp

void double that(double y) { y *= 2.; } // Value
void double that(double *yp) { *yp *= 2.; } // Pointer
void double_ that ref(doubles y) { y *= 2.; } // Refer.

int main () {
double x(4.0) ;

// Does not do anything.
double that (x);

// Does work.
double that (&x);

// Works too.
double_that_ref(x);

C function arguments are
always by value.

We have to explicit data
reference types, pointers, to
pass them by value.

C++ adds arguments by
reference.

References are like
dereferenced pointers that
cannot be reassigned
(variable nicknames).

Much safer than pointers.

Polymorphic functions
conflict.

Like mutables in Python.



C++ classes, polymorphism: overloading.cpp

int main () {

vector3d vl (1), v2(2), v3(3); e Overloading is a device for

polymorphic behaviour.

cout << "vl = " << vl << endl; 3
e operator overloading.

vector3d v4;

vd = vl + v3; e Most operators can be
overloaded.

cout << "v4 = " << v4 << endl;

cout << "-v4 = " << -v4 << endl; e this is a pointer to itself.

cout << endl;
e some operators can be a

va -= vi; method and/or a function.

v4 vl * 2;
vd = 2.0 * v4;

cout << "v4 = " << v4 << endl;



C++ Standard Template Library (STL)

e The Standard Template Library (STL) is a set of C++ template classes to provide
common programming data structures and functions.

e ltis alibrary of container classes, algorithms, and iterators.

e Makes all the difference.

e Helps to avoid explicit memory management.

What is inside:
e Containers: string, list, vector, array, map, set, valarray, pair, etc.
e |terators: classes to point at the memory addresses in containers.

e Algorithms: sort, reverse, min/max, accumulate, search, transform.



C++ templates: template.cpp

// Overloaded functions.

int half(int x) { return x / 2; } e Mechanism to avoid rewriting
double half (double x) { return x / 2; } many similar Over|oaded
functions.

// Function template.
template<class cType> cType half (const cType& x) { S EXCGptiOﬂS can be SpeCified

return x / cType(2); } (specialization)

// Template specialization.

template<> string half<string>(const string& x) { i Convenlent fOr Contalner

return x.substr (0, x.length() / 2); } classes or general
algorithms.
// Class template.
template<class cType> class arraylO { Y Temp|at|ng iIs done at the
SR compilation time.

cType xx[10];
public:
cTypeé& operator|[] (int i) { return xx[i]; }

};



STL vector: vector.cpp

e vector is an equivalent of

#include<vector> Python list.

using namespace std; :
vector<int> ii, jj(10), kk(10, 1); e Workhorse container.
for(int i = 0; i < jj.size(); i++) jj[i] = i; e Knows its size;

e Can grow / shrink dynamically.

ii = 33;
int m = ii[10];

e Can be appended and elements

int n = ii.size(); can be inserted.
bool flag = ii.empty(); // Yes / No : ;
e Linear continuous data storage.

ii.push back (m) ; // Append .
ii.push back(n); e Constant time access.
ii.insert(ii.begin(), m); // Insert s May reqUIre re-allocatlon Of
ii.pop back() ; // Remove last storage buffers when

appending data.
ii.erase(ii.begin() + 5); // Delete

ii.clear(); e Iterators are smart pointers.



STL strings: string.cpp

#include<string>
using namespace std;

char s[] = "C string";
string sl;

string s2("string 2") ;
string s3(s) ;

sl =s2 + " and " + s3;

int n = sl.size();
int m = sl.length();

sl += " / Some more text";

int pos = sl.find first of("/");

int len = sl.size() - pos;

string s4 = sl.substr(pos, len);

Sequence of characters.
Similar to vector<char>.

Replacement for Python
string class.

Not the same as C strings!

Methods are limited in
comparison with Python
class.

Use .c str () method to
generate a C-string.



STL map and iterators: map.cpp

#include<map>

map<string,int> dict; // Declaration.
dict["One"] = 1;

dict["Two"] = 2;

int x = dict["Four"]; // Key to Value.

int y = dict["Seven"]; // Key is not there.
int ¢ = dict.count ("Two") ; // Either 0 or 1.

// Map iterator class is also defined.
map<string,int>::iterator it = dict.find("Two") ;

string k = it->first; // The key is first.
int value = it->second; // The value is second.
int n = dict.size(); // Number of elements.

dict.clear () ;

Replacement for Python
dictionaries.

Good for indices, but not as
fast as vectors for numerical
keys.

Have to use iterators to
iterate over maps or point to
an element.

Attempt to access a key that is
not in the map creates that
key.

Uses an pair<key,value>
container class inside.



STL algorithms: algo.cpp

#include<algorithm>

vector<double> values;
// Sorting.
sort (values.begin(), values.end())

// Reversing.
reverse (values.begin() , values.end()) ;

// Min / Max returns an iterator, not the value.

vector<double>: :iterator it;
it = max element(values.begin(), values.end())
it = min element(values.begin(), values.end()):

// Min / Max of two wvalues.
double minx = min(xl, x2);
double maxx = max(x1l, x2);

Collection of functions that
work on sequences (mostly).

Counting, searching, testing.
Copying, replacing, removing.
Transforming, generating.
Partitioning.

Binary search.

Min / Max.

Custom classes may require
additional functions
(comparison, etc.).



C'H' binary flle reading: ﬁles.cpp e Input File Stream file class,

ifstream.
#include <fstream> e Somewhat similar to the C
using namespace std; version:

ifstream file("hello.cpp",
ios::in|ios: :binary|ios: :ate);

// Find out the size of the file.
streampos size = file.tellg() ;

// Allocate memory for the entire file.
char *buffer = new char[size];

// Rewind the file to the beginning and read it.

file.seekg (0, ios: :beg) ;
file.read (buffer, size);

// Do not need it anymore.
file.close() ;

o Find the file size;

o Allocate a buffer;

o Read the file into the buffer.
We have to check if the file

has been opened
successfully.

Uses ios: : £lags to control
the file mode.

new ..[] and delete[] are
C++ version of malloc ()
and free ().



C++ exceptions: exceptions.cpp

try {
throw string("Help!") ;
}
catch (int ex) {
cout << "Int exception (" << ex << ")"
<< endl;
}
catch (double ex) {
cout << "Double exception (" << ex << ")"
<< endl;
}
catch(const stringé& ex) {
cout << "String exception (" << ex << ")"
<< endl;

}
catch(...) {

cout << "Unknown exception (...)" << endl;

}

C++ adds exception handling.

try {...} catch (type)
{...} construct.

throw value: type of the
value matches
catch (value).

#include<exceptions>
defines many exception
classes thrown by STL
functions and methods.



Finding information:

e CPlusPlus.Com, Excellent source of information on C++ and STL:
http://www.cplusplus.com

e CppReference.Com:
https://cppreference.com

e StackOverflow, a good resource for programming questions:
https://stackoverflow.com

e Google it:
“How to handle exceptions in C++?”
“How to read a text file in C++7?”
“How to write a binary data file in C++?”

e The C++ Programming Language (4th Edition), Bjarne Stroustrup.


http://www.cplusplus.com
https://cppreference.com
https://stackoverflow.com

Conclusions for the C++ part:

e C++ uses C syntax for its own purpose.

e (C++ clearly separates the programer from data / memory details by using
smart data objects.

e C++is a very different language from C.
e C++is a complex language.

e C++ together with the STL can be a good additional tool for Python
programmers.



Thank you.

Questions?



