Speeding up Python code
S with G/

Dmitri Rozmanov

W.estGrid HVPC summer school at UefC 2019

Information:

e Coffee break: 14:30 -- 14:45 in the Atrium.

e Shared Google Doc: htip://bit.ly/UofCPythonCpp

e Logging to cluster:
$ ssh username(@arc.ucalgary.ca

e Interactive node request command:
$ salloc -t 4:00:00 -N 1 -n 1 -¢c 1 --mem=1gb
-p single --reservation=ss2019

http://bit.ly/UofCPythonCpp

Introduction

Python is a very nice language.

Python has lots of libraries.

Python is used very widely.

Python library functions usually run very fast.

e Pure Python is very slow (interpreted language).
e To write fast code you have to wrap you ideas into the language of the library.
e \What do you do if there is no library that does what you need?

e Flexibility of using Python and still being able to do exactly
what you want, quickly.

Today we will

e Learn about several way to call C/C++ code from Python.

e Pick one method and look at it in more details.

e Find the most time-consuming part of a test case Python code.

e Implement the time-critical part in C++.

e Modify the Python program to take advantage of the compiled C++ function.
e Evaluate the speed-up.

e Make conclusions.

Development environment

e Bash command line shell:
$ ssh username@arc.ucalgary.ca

e Python 2.7 and GCC 4.8.5 (default):
$ module load python/anaconda2-2018.12

e GNU Screen shell session manager:
S screen

e Text editor: vi, vim, nano, mcedit, emacs.
$ vim my code.py
$ mcedit my code.py

GNU Screen

Screen is a full-screen window manager for several interactive shells.

e Quick switching between the script editing and running windows;
e Session will persist if you close the lid of your laptop.
But you have to reconnect.

Minimal useful commands: $ man screen

Create a new window: C-a ¢

Close a window: C-d

Detach screen from the this terminal: C-a d
Switch to another window: C-a “

Toggle between two recent windows: C-a C-a
Reconnect; $ screen -r

How to call C / C++ functions from Python?

e Python-C-API is the backbone of the standard Python interpreter, CPython.
Using this APl it is possible to write Python extension module in C and C++.

e CTypes is included in Python 2.5 and later.
CTypes lets you talk directly to shared libraries on both Windows and UNIX.

e SWIG: Simple Wrapper Interface Generator.
SWIG is capable of wrapping C in a large variety of languages.

e Cython is both a python-like language for writing C-extensions
and an advanced compiler for this language.

How to call C / C++ functions from Python?

e Pyrex is a Python-like language used to create C modules for Python.

e SIP is used to generate Python bindings for Qt (PyQt), a graphics library.
It can be used to wrap any C or C++ API.

e Boost.Python lets you run C++ code from Python,
and Python code from C++, seamlessly.

e Resources:
o SciPy lecture:
http://www.scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html
o Software carpenty:
http://intermediate-and-advanced-software-carpentry.readthedocs.io/en/latest/c++-wrapping.html

http://www.scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html
http://intermediate-and-advanced-software-carpentry.readthedocs.io/en/latest/c++-wrapping.html

How to call C / C++ functions from Python? Cont.

Python-C-API
CTypes

SWIG

Cython

pyrex

SIP

Boost.Python

Part of Python

Yes
Yes
No
No
No
No

No

Compiled

Yes
No
Yes
Yes
Yes
Yes

Yes

Autogenerated

No
No
Yes
Yes
Yes

Yes

Numpy Support

Yes
Yes
Yes

Yes

?

CTypes

is a foreign function library for Python. It provides C compatible data types, and
allows calling functions in DLLs or shared libraries. It can be used to wrap calls to
these libraries in pure Python.

e Python manual: https://docs.python.org/2/library/ctypes.html

e SciPy Lecture:
https://scipy-lectures.org/advanced/interfacing with c/interfacing with c.html#id3

e SciPy Cookbook CTypes:
http://scipy.qithub.io/old-wiki/pages/Cookbook/Ctypes

Caveats:
e Have to compile your code into a shared (dynamic) library;
e Not suitable for complex data types.
e No explicit support for C++ (unimportant !)

https://docs.python.org/2/library/ctypes.html
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id3
http://scipy.github.io/old-wiki/pages/Cookbook/Ctypes

CTypes

° Ctypes:c_int, c_double, c float, c bool, c char, c_size t, .,
e Arrays types: (c_int * 10), (c_double * 20);

e Pointer types: POINTER (c_int), POINTER (c_double);

e Special pointer types: ¢ char p, c void p.

e Constructors: c_int(), c int(variable), (c_int * 10) ()

e Pointer to a variable: pointer (variable);

e Type casting: cast (array, POINTER(c int));

e Functions: sizeof (variable), sizeof (c_int), addressof (variable),

CTypes example

import ctypes as ct e |oad the module.
dir (ct)
e Check the contents.

ct.c_double

ct.c_int e CTypes data types.

ct.c_char

e Create variables using

ct.c_double () constructors.

cx = ct.c_double(3.14) e Get information about

cx CTypes objects.

ct.sizeof (cx)] CTypeS ObjeCtS are
mutable.

ct.addressof (cx)
hex (ct.addressof (cx))

cx.value
cx.value = 2.72

CcX

CTypes example: Galling an external function.

import ctypes as ct ¢ util.find library()
import ctypes.util h t_ dard
dir(ct.util) searcnes standaar

locations for “1ibm.so”.
ct.util.find library("m")

'1ibm.so0.6" e Full path to the library.
libm = ctypes.cdll.LoadLibrary("libm.so.6") ® lerary ObjeCt Wlth Iazy
dir (libm) dCCessS.
libm.cos e Must be defined:

<_FuncPtr object at 0x7fb55cb90bb0> ‘ ‘
o argtypes is a list of types.

dir (libm) o restype is a type.

libm.cos.restype = ctypes.c_double
libm.cos.argtypes = [ctypes.c double]
libm.cos (3.14)

-0.9999987317275395

C-pointer concept refresher

e Pointer is a variable
containing a generalized
memory address.

e Dereference operator * and
Address operator &.

e C-arrays and pointers are
very similar.

e Arrays are constants and
pointers are variables.

e Pointers have types because
they point to data of specific
size and format.

double x = 3.14;
double *xp = &x;

// Variable
// Pointer to variable

int 1 = 123;
int *ip = &i;

double xx[] = (1.1, 2.2, 3.3, 4.4, 5.5}; // Array
XX; // Pointer

double *xxp

// Accessing data:
printf("%g %g %g %g\n",
xx[3], xxp[3], *(xx + 3), *(xxp + 3));

char sl[] = "Array string.";
char *s2 = "Pointer string.";

// Compilation error.

sl = s2;

// Works, but we lose access to the s2 string
s2 = s1;

CTypes pointers

XX = (ctypes.c_int * 10) ()
XX

<_main__.c_int Array 10 object at 0x7£258551£710>

[o,

[o,

list (xx)
o, o, 0, 0, 0, 0, O, O, O]

xx[:] = range(10)
xx[:]
1, 2, 3, 4, 5, 6, 7, 8, 9]

pPx = ctypes.POINTER (ctypes.c_int) (xx)
pPx

<_main_.LP c_int object at 0x7£258551£4d40>

px[2]

xx[10]

.. Index error ..

33

px[10]
—~ This is garbage, but it works anyways.

Arrays and pointers for
accessing multiple data.

Arrays can be cast into
pointers automatically.

Arrays know the limits,
pointers do not.

There are many ways to
create a pointer.

ctypes.POINTER isS a
constructor.

ctypes.pointeris a
function.

Our Case Task

A test case python code that

e Generates a random configuration of Ar atoms inside a cubic simulation box.
e Checks the configuration for spatial overlaps between atoms.
e Reports the total number of overlaps in the system.

e The program accepts required parameters from the command line.

Python code outline: Main logic

=== Classes e 3 main sections: classes,
functions, main code.

=== Functions

e The main code does
5 things:

=== Main code

Read input parameters. o pipaiEiee

params = get_input() o generates random atoms

using the parameters.
Generate a configuration of a Number of Ag atoms.

conf = gen config(params) o finds overlaps between
atoms.

Check the configuration for atomic clashes (overlaps).
o reports the found overlaps.
overlaps = check overlaps (conf)

e o reports timings.
Report info on found overlaps here.

e Timings are our data of

timings.report () interest.
=== End of code

Python code outline (cont.): Functions and Classes

=== Classes

class timing type:
class params_type:
class atom type:

class config type:

=== Functions
def get input():

return params
def gen config(params):

return conf

def check overlaps (conf):

return overlaps

=== Main code

Storage classes with
some reporting
capabilities.

There is a function for
each major step.

Functions return a
storage object for the
next step.

Final timings are
reported by the timing
object.

Python code: How to use.

e Input: box size (A), number of atoms (N), random seed.
$./overlaps.py 50 1000 O

e Configuration of Ar atoms of 3.4 A in diameter (d).

e Internals of the overlap detecting function:
o Double loop i, j over the all atoms.
o Use (d? < r?) for clash condition.
o Store overlaps as a list of (i, j, dij) tuples.
o Use the overcounting to check for correctness, (N+2 * N,).

e Prints out the first 7 overlaps.

e Test, if it works properly.
o (50,1000, 0 — 591 overlaps).

What step is the slowest?

e \What step is the slowest?
O 10 atoms in a 100 Ang box?

O 10000 atoms in a 100 Ang box?

e Howslowis it?
o Very?
o Alittle?

e How long will it take for 1 000 000 atoms?

e What can we do about it?
O Rewrite the whole thing in Fortran-77.

O Find a better computer.

How slow is the slow? Big O notation to describe complexity.

O(1) describes an algorithm that will always execute in the same time (or
space) regardless of the size of the input data set.
get_input(...) is a O(1) complexity function.

O(N) describes an algorithm whose performance will grow linearly and in
direct proportion to the size of the input data set.
gen_config(...) is a O(N) complexity function.

O(N?) represents an algorithm whose performance is directly proportional to
the square of the size of the input data set.

check_overlaps(...) is an O(N?) complexity function.

Total complexity is the worst complexity of the steps, O(N?) here.

C++ design decisions

Requirements:
e We have to pass coordinates, atomic radii;

e We obtain (i, j) pairs as well as distances, and number of clashes;

e We do not know the number of clashes upfront.

Design:
e Use basic C / C++ data types: int, double, array;

e C arrays are not aware of their length. We have to pass the lengths.

e Array arguments are represented by pointers;

e Cannot easily “grow” array sizes. Memory should be allocated.

C++ design

e Preallocate return buffers on the
Python side; int check overlaps(const double* xx,
const double* yy,
e Find all atomic overlaps; const double* zz,
const double* rr,
int n,

e Return the number of overlaps; int maxnolaps

int* ii,
e Return as many (i, j, distance) int* jj,
values as possible. double* dd) {

e If the number is larger than the ERETER el s

size of the buffer, reallocate the
buffers and redo the search.

Calling C++ code: The Plan

Place our C++ function to my . cpp source file.
Compile the my . cpp source code to my . o object file.
Package the my . o object file to 1ibmycpp . so shared library.

Place the check _overlaps(...) wrapper function into
mycpplib. py file.

Load mycpplib.py in the main overlap.py code as a module.

Call the wrapper function as mycpplib.check _overlaps(...).

Calling C++ code: my . cpp

e Include <iostream>, <cmath>.
e Use namespace std.
e Create the ‘extern “C” ’code block to prevent function name mangling.

e \Write a dummy overlaps(...) function.

e Compile to check for errors.
0 g++ -Wall -fPIC -c my.cpp

-Wall enables lots of warnings on strange code.
-fPIC generate position-independent code.

Calling G++ code: Implement overlap search

e i, jdouble loop, i=][0, n),j=[i+1, n).
e Compare rc? vs d?, to avoid unnecessary sqrt() calls.
e Fill up the buffers only until the preallocated mark, max_nolaps.

e Compile
© g++ -02 -Wall -fPIC -c my.cpp

e Build a shared library:
© gt++ -shared -o libmycpp.so my.o

Calling C++ code: mycpplib. py

Import sys, os, math, time, ctypes.

Load the the shared library, 1ibmycpp. so.

Write a dummy check_overlaps(...) wrapper function.
Import the mycpplib.py module in the main code.

Change the check_overlaps(...) call in the main code to
the new dummy wrapper function.

Test, that it works properly.

Calling G++ code: Python wrapper function

e Define the return and input argument types.

e Allocate and populate the input arrays.

e Allocate output arrays using max_nolaps initial guess.

e Call the C++ function and obtain the true number of overlaps, nolaps.
e Pack and return the list of overlap tuples, (i, j, d).

e Test, that it works properly.
o (50,1000, 0 — 591 overlaps) !!! Works.
o (100, 10000, 0 — 7948 overlaps)
o (50,10000, 0 — 20000 overlaps) !!! buffers are too small.

Calling C++ code: Handling number of overlaps greater than max

e Use aloop with post condition: while True .. if .. break;
e If nolaps < max_nolaps, then we are done.

e If not, reallocate and recompute.
e Double time in the worst case.

e Test, that it works properly.
o (100, 10000, 0 — 7948 overlaps)
o (50,10000, 0 — 60983 overlaps), note the double time.

C'H' dﬂSlgn NO rBCOmpUtB int check overlaps (const double* xx,

const double* yy,
const double* zz,
e Allocate the memory on C++ side const double* rr,

of the code; int n,
e Have to free the memory on the int** pii,
C++ side. int** p3jj,
double** pdd) {
e Complication:

o C arguments are “by value’. return nolaps;
e Forreturn data have to use

O POINTER (POINTER(c_int)) |void free_mem(int* ii,
int* 33,

O int**
55 double* dd) {

Calling C++ code: Design without recompute

Include <vector>.

Build from overlaps(...):
o copy and rename to overlaps_mem(...).

o Change the call parameters: no max and ** pointers.
Collect the data into an STL container that can dynamically grow;
Container is a local variable that cannot be returned.
Allocate memory, copy the data, update return pointers.
Implement a free_mem(...) function to free the allocated memory.
Compile

o g++ -02 -Wall -£PIC -c my.cpp
Build a shared library:

0 g++ -shared -o libmycpp.so my.o

Calling C++ code: New Python wrapper

e Using the same source file mycpplib.py.

e check_overlaps_mem(...), based on check_overlaps(...) wrapper.
e Addarray of pointers types to the local definitions.

e No max_nolaps.

e Change the call to overlaps(...) to overlaps _mem(...).

e Change the return array argument types to array of pointers.

e Allocate arrays of pointers, size = 1, pii, pjj, pdd.

Calling C++ code: New Python wrapper (cont.)

Call the function and obtain the number of overlaps, nolaps.
Prepare the resulting list of tuples, [(i, j, d)].

Use pi, pj, pd pointers to access data, for convenience.

Free memory using the pointers.

Change the call from the main code to check_overlaps_mem(...).

Test, that it works properly.
o (100, 10000, 0 — 7948 overlaps)
o (50,10000, 0 — 60983 overlaps), note the single time.

Conclusions and Observations

We have been able to significantly speed up our test Python code using C++.

CTypes is a relatively easy and standard way to call C/C++ functions from
Python.

Memory management can be an issue when the size of the return data is
unknown.

Different design patterns demonstrate different performance.

Unlike pure Python there is a big difference between available C-functions on
Windows and Linux. If you are using system libraries you may need to
program different versions you Python and C++ code for Windows and
Linux.

Thank you.

Questions?

