
Speeding up Python code
with C/C++

Dmitri Rozmanov

WestGrid HPC summer school at UofC 2019

Information:
● Coffee break: 14:30 -- 14:45 in the Atrium.

● Shared Google Doc: http://bit.ly/UofCPythonCpp

● Logging to cluster:
$ ssh username@arc.ucalgary.ca

● Interactive node request command:
$ salloc -t 4:00:00 -N 1 -n 1 -c 1 --mem=1gb

 -p single --reservation=ss2019

http://bit.ly/UofCPythonCpp

Introduction
● Python is a very nice language.
● Python has lots of libraries.
● Python is used very widely.
● Python library functions usually run very fast.

● Pure Python is very slow (interpreted language).
● To write fast code you have to wrap you ideas into the language of the library.
● What do you do if there is no library that does what you need?

● Flexibility of using Python and still being able to do exactly
what you want, quickly.

Today we will
● Learn about several way to call C/C++ code from Python.

● Pick one method and look at it in more details.

● Find the most time-consuming part of a test case Python code.

● Implement the time-critical part in C++.

● Modify the Python program to take advantage of the compiled C++ function.

● Evaluate the speed-up.

● Make conclusions.

Development environment
● Bash command line shell:

$ ssh username@arc.ucalgary.ca

● Python 2.7 and GCC 4.8.5 (default):
$ module load python/anaconda2-2018.12

● GNU Screen shell session manager:
$ screen

● Text editor: vi, vim, nano, mcedit, emacs.
$ vim my_code.py
$ mcedit my_code.py

GNU Screen
Screen is a full-screen window manager for several interactive shells.

● Quick switching between the script editing and running windows;
● Session will persist if you close the lid of your laptop.

But you have to reconnect.

Minimal useful commands:

● Create a new window: C-a c
● Close a window: C-d
● Detach screen from the this terminal: C-a d
● Switch to another window: C-a “
● Toggle between two recent windows: C-a C-a
● Reconnect: $ screen -r

$ man screen

How to call C / C++ functions from Python?

● Python-C-API is the backbone of the standard Python interpreter, CPython.
Using this API it is possible to write Python extension module in C and C++.

● CTypes is included in Python 2.5 and later.
CTypes lets you talk directly to shared libraries on both Windows and UNIX.

● SWIG: Simple Wrapper Interface Generator.
SWIG is capable of wrapping C in a large variety of languages.

● Cython is both a python-like language for writing C-extensions
and an advanced compiler for this language.

How to call C / C++ functions from Python?
● Pyrex is a Python-like language used to create C modules for Python.

● SIP is used to generate Python bindings for Qt (PyQt), a graphics library.
It can be used to wrap any C or C++ API.

● Boost.Python lets you run C++ code from Python,
and Python code from C++, seamlessly.

● Resources:
○ SciPy lecture:

http://www.scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html
○ Software carpenty:

http://intermediate-and-advanced-software-carpentry.readthedocs.io/en/latest/c++-wrapping.html

http://www.scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html
http://intermediate-and-advanced-software-carpentry.readthedocs.io/en/latest/c++-wrapping.html

How to call C / C++ functions from Python? Cont.

Part of Python Compiled Autogenerated Numpy Support

Python-C-API Yes Yes No Yes

CTypes Yes No No Yes

SWIG No Yes Yes Yes

Cython No Yes Yes Yes

pyrex No Yes Yes ?

SIP No Yes Yes ?

Boost.Python No Yes ? ?

CTypes
is a foreign function library for Python. It provides C compatible data types, and
allows calling functions in DLLs or shared libraries. It can be used to wrap calls to
these libraries in pure Python.

● Python manual: https://docs.python.org/2/library/ctypes.html
● SciPy Lecture:

https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id3
● SciPy Cookbook CTypes:

http://scipy.github.io/old-wiki/pages/Cookbook/Ctypes

Caveats:
● Have to compile your code into a shared (dynamic) library;
● Not suitable for complex data types.
● No explicit support for C++ (unimportant !)

https://docs.python.org/2/library/ctypes.html
https://scipy-lectures.org/advanced/interfacing_with_c/interfacing_with_c.html#id3
http://scipy.github.io/old-wiki/pages/Cookbook/Ctypes

CTypes

● C types: c_int, c_double, c_float, c_bool, c_char, c_size_t, …;

● Arrays types: (c_int * 10), (c_double * 20);

● Pointer types: POINTER(c_int), POINTER(c_double);

● Special pointer types: c_char_p, c_void_p.

● Constructors: c_int(), c_int(variable), (c_int * 10)()

● Pointer to a variable: pointer(variable);

● Type casting: cast(array, POINTER(c_int));

● Functions: sizeof(variable), sizeof(c_int), addressof(variable);

CTypes example
>>> import ctypes as ct
>>> dir(ct)
…
>>> ct.c_double
>>> ct.c_int
>>> ct.c_char

>>> ct.c_double()

>>> cx = ct.c_double(3.14)
>>> cx

>>> ct.sizeof(cx)

>>> ct.addressof(cx)
>>> hex(ct.addressof(cx))

>>> cx.value
>>> cx.value = 2.72
>>> cx

● Load the module.

● Check the contents.

● CTypes data types.

● Create variables using
constructors.

● Get information about
CTypes objects.

● CTypes objects are
mutable.

● util.find_library()
searches standard
locations for “libm.so”.

● Full path to the library.

● Library object with lazy
access.

● Must be defined:
○ argtypes is a list of types.

○ restype is a type.

CTypes example: Calling an external function.
>>> import ctypes as ct
>>> import ctypes.util
>>> dir(ct.util)
...
>>> ct.util.find_library("m")
'libm.so.6'

>>> libm = ctypes.cdll.LoadLibrary("libm.so.6")
>>> dir(libm)
...
>>> libm.cos
<_FuncPtr object at 0x7fb55cb90bb0>

>>> dir(libm)
...

>>> libm.cos.restype = ctypes.c_double
>>> libm.cos.argtypes = [ctypes.c_double]
>>> libm.cos(3.14)
-0.9999987317275395

C-pointer concept refresher
● Pointer is a variable

containing a generalized
memory address.

● Dereference operator * and
Address operator &.

● C-arrays and pointers are
very similar.

● Arrays are constants and
pointers are variables.

● Pointers have types because
they point to data of specific
size and format.

 double x = 3.14; // Variable
 double *xp = &x; // Pointer to variable

 int i = 123;
 int *ip = &i;

 double xx[] = {1.1, 2.2, 3.3, 4.4, 5.5}; // Array
 double *xxp = xx; // Pointer

 // Accessing data:
 printf("%g %g %g %g\n",
 xx[3], xxp[3], *(xx + 3), *(xxp + 3));

 char s1[] = "Array string.";
 char *s2 = "Pointer string.";

 // Compilation error.
 s1 = s2;
 // Works, but we lose access to the s2 string
 s2 = s1;

>>> xx = (ctypes.c_int * 10)()
>>> xx
<__main__.c_int_Array_10 object at 0x7f258551f710>

>>> list(xx)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

>>> xx[:] = range(10)
>>> xx[:]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> px = ctypes.POINTER(ctypes.c_int)(xx)
>>> px
<__main__.LP_c_int object at 0x7f258551f4d0>

>>> px[2]
2
>>> xx[10]
… Index error …
>>> px[10]
33 ← This is garbage, but it works anyways.

CTypes pointers
● Arrays and pointers for

accessing multiple data.

● Arrays can be cast into
pointers automatically.

● Arrays know the limits,
pointers do not.

● There are many ways to
create a pointer.

● ctypes.POINTER is a
constructor.

● ctypes.pointer is a
function.

Our Case Task

A test case python code that

● Generates a random configuration of Ar atoms inside a cubic simulation box.

● Checks the configuration for spatial overlaps between atoms.

● Reports the total number of overlaps in the system.

● The program accepts required parameters from the command line.

=== Classes ================================
...

=== Functions ==============================
...

=== Main code ==============================
Read input parameters.
params = get_input()

...
Generate a configuration of a Number of Ag atoms.
conf = gen_config(params)

...
Check the configuration for atomic clashes (overlaps).
overlaps = check_overlaps(conf)

...
Report info on found overlaps here.

...
timings.report()
=== End of code ============================

Python code outline: Main logic
● 3 main sections: classes,

functions, main code.

● The main code does
5 things:

○ gets input parameters.

○ generates random atoms
using the parameters.

○ finds overlaps between
atoms.

○ reports the found overlaps.

○ reports timings.

● Timings are our data of
interest.

Python code outline (cont.): Functions and Classes
=== Classes ================================
class timing_type:

...
class params_type:

...
class atom_type:

...
class config_type:

...
=== Functions ==============================
def get_input():

...
return params

def gen_config(params):
...
return conf

def check_overlaps(conf):
...
return overlaps

=== Main code ==============================

● Storage classes with
some reporting
capabilities.

● There is a function for
each major step.

● Functions return a
storage object for the
next step.

● Final timings are
reported by the timing
object.

Python code: How to use.
● Input: box size (Å), number of atoms (N), random seed.

$./overlaps.py 50 1000 0

● Configuration of Ar atoms of 3.4 Å in diameter (d).

● Internals of the overlap detecting function:
○ Double loop i, j over the all atoms.
○ Use (d2 < r2) for clash condition.
○ Store overlaps as a list of (i, j, dij) tuples.
○ Use the overcounting to check for correctness, (N + 2 * NOL).

● Prints out the first 7 overlaps.

● Test, if it works properly.
○ (50, 1000, 0 → 591 overlaps).

What step is the slowest?

● What step is the slowest?
○ 10 atoms in a 100 Ang box?

○ 10000 atoms in a 100 Ang box?

● How slow is it?
○ Very?
○ A little?

● How long will it take for 1 000 000 atoms?

● What can we do about it?
○ Rewrite the whole thing in Fortran-77.

○ Find a better computer.

How slow is the slow? Big O notation to describe complexity.
● O(1) describes an algorithm that will always execute in the same time (or

space) regardless of the size of the input data set.
get_input(...) is a O(1) complexity function.

● O(N) describes an algorithm whose performance will grow linearly and in
direct proportion to the size of the input data set.
gen_config(...) is a O(N) complexity function.

● O(N2) represents an algorithm whose performance is directly proportional to
the square of the size of the input data set.
check_overlaps(...) is an O(N2) complexity function.

● Total complexity is the worst complexity of the steps, O(N2) here.

C++ design decisions
Requirements:

● We have to pass coordinates, atomic radii;

● We obtain (i, j) pairs as well as distances, and number of clashes;

● We do not know the number of clashes upfront.

Design:

● Use basic C / C++ data types: int, double, array;

● C arrays are not aware of their length. We have to pass the lengths.

● Array arguments are represented by pointers;

● Cannot easily “grow” array sizes. Memory should be allocated.

C++ design

int check_overlaps(const double* xx,
const double* yy,
const double* zz,
const double* rr,
int n,
int maxnolaps,
int* ii,
int* jj,
double* dd) {

…
return nolaps;

}

● Preallocate return buffers on the
Python side;

● Find all atomic overlaps;

● Return the number of overlaps;

● Return as many (i, j, distance)
values as possible.

● If the number is larger than the
size of the buffer, reallocate the
buffers and redo the search.

Calling C++ code: The Plan
● Place our C++ function to my.cpp source file.

● Compile the my.cpp source code to my.o object file.

● Package the my.o object file to libmycpp.so shared library.

● Place the check_overlaps(...) wrapper function into
mycpplib.py file.

● Load mycpplib.py in the main overlap.py code as a module.

● Call the wrapper function as mycpplib.check_overlaps(...).

Calling C++ code: my.cpp

● Include <iostream>, <cmath>.

● Use namespace std.

● Create the ‘extern “C” ’ code block to prevent function name mangling.

● Write a dummy overlaps(...) function.

● Compile to check for errors.
○ g++ -Wall -fPIC -c my.cpp

-Wall enables lots of warnings on strange code.
-fPIC generate position-independent code.

Calling C++ code: Implement overlap search

● i, j double loop, i = [0, n), j = [i+1, n).

● Compare rc2 vs d2, to avoid unnecessary sqrt() calls.

● Fill up the buffers only until the preallocated mark, max_nolaps.

● Compile
○ g++ -O2 -Wall -fPIC -c my.cpp

● Build a shared library:
○ g++ -shared -o libmycpp.so my.o

Calling C++ code: mycpplib.py

● Import sys, os, math, time, ctypes.

● Load the the shared library, libmycpp.so.

● Write a dummy check_overlaps(...) wrapper function.

● Import the mycpplib.py module in the main code.

● Change the check_overlaps(...) call in the main code to
the new dummy wrapper function.

● Test, that it works properly.

Calling C++ code: Python wrapper function
● Define the return and input argument types.

● Allocate and populate the input arrays.

● Allocate output arrays using max_nolaps initial guess.

● Call the C++ function and obtain the true number of overlaps, nolaps.

● Pack and return the list of overlap tuples, (i, j, d).

● Test, that it works properly.
○ (50, 1000, 0 → 591 overlaps) !!! Works.
○ (100, 10000, 0 → 7948 overlaps)
○ (50, 10000, 0 → 20000 overlaps) !!! buffers are too small.

Calling C++ code: Handling number of overlaps greater than max

● Use a loop with post condition: while True … if … break;

● If nolaps < max_nolaps, then we are done.

● If not, reallocate and recompute.

● Double time in the worst case.

● Test, that it works properly.
○ (100, 10000, 0 → 7948 overlaps)
○ (50, 10000, 0 → 60983 overlaps), note the double time.

C++ design. No recompute int check_overlaps(const double* xx,
const double* yy,
const double* zz,
const double* rr,
int n,
int** pii,
int** pjj,
double** pdd){

………………………………
return nolaps;

}

void free_mem(int* ii,
 int* jj,
 double* dd){

………………………………
}

● Allocate the memory on C++ side
of the code;

● Have to free the memory on the
C++ side.

● Complication:

○ C arguments are “by value”.

● For return data have to use

○ POINTER(POINTER(c_int))

○ int**

Calling C++ code: Design without recompute
● Include <vector>.

● Build from overlaps(...):
○ copy and rename to overlaps_mem(...).

○ Change the call parameters: no max and ** pointers.

● Collect the data into an STL container that can dynamically grow;

● Container is a local variable that cannot be returned.

● Allocate memory, copy the data, update return pointers.

● Implement a free_mem(...) function to free the allocated memory.

● Compile
○ g++ -O2 -Wall -fPIC -c my.cpp

● Build a shared library:
○ g++ -shared -o libmycpp.so my.o

● Using the same source file mycpplib.py.

● check_overlaps_mem(...), based on check_overlaps(...) wrapper.

● Add array of pointers types to the local definitions.

● No max_nolaps.

● Change the call to overlaps(...) to overlaps_mem(...).

● Change the return array argument types to array of pointers.

● Allocate arrays of pointers, size = 1, pii, pjj, pdd.

Calling C++ code: New Python wrapper

● Call the function and obtain the number of overlaps, nolaps.

● Prepare the resulting list of tuples, [(i, j, d)].

● Use pi, pj, pd pointers to access data, for convenience.

● Free memory using the pointers.

● Change the call from the main code to check_overlaps_mem(...).

● Test, that it works properly.
○ (100, 10000, 0 → 7948 overlaps)
○ (50, 10000, 0 → 60983 overlaps), note the single time.

Calling C++ code: New Python wrapper (cont.)

Conclusions and Observations
● We have been able to significantly speed up our test Python code using C++.

● CTypes is a relatively easy and standard way to call C/C++ functions from
Python.

● Memory management can be an issue when the size of the return data is
unknown.

● Different design patterns demonstrate different performance.

● Unlike pure Python there is a big difference between available C-functions on
Windows and Linux. If you are using system libraries you may need to
program different versions you Python and C++ code for Windows and
Linux.

Thank you.

Questions?

