
Working with Spatial Data

Working with Spatial Data
Research Computing Summer School 2019

Ian Percel

University of Calgary, Research Computing Services

May 30, 2019

Working with Spatial Data

Who is here?

Who has programmed in Python before?

Who has used Pandas before?

Who is familiar with Databases and SQL?

Who has worked with geospatial data before?

Who has used PySAL or GeoPandas before?

Working with Spatial Data

What is this talk about?

How do we do spatial analysis without a spatial DataBase like
QGIS, PostGRES, or ArcGIS?

PySAL provides computational geometry at a high level and
can be integrated in to Pandas column. Is this enough?

GeoPandas provides structures that are more useful for
geographic information science (rather than having to do
geometry manually)

If we are willing to do some of our own geometric analysis, we
can build our own spatial indexes [4]

What we won’t cover: fast raster computations, fast GDAL
based operations, spatial statistics

Working with Spatial Data

Outline

1 Downloading Data, Accessing ARC, and Example Problem

2 Pandas Preliminaries
Theory
Practice

3 Minimalistic Spatial Data Handling with PySAL and Pandas
Theory
Practice

4 Geopandas Basics
Theory
Practice

Working with Spatial Data

Outline

5 GeoPandas for Combined Spatial and Numerical Analysis
Theory
Practice

6 Spatial Joins in GeoPandas using R-Tree Indexing
Theory

7 Bibliography

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Downloading this presentation

https://westgrid.github.io/calgarySummerSchool2019/

4-materials.html

Right click on the Working with Spatial Data:Presentation link
and Save As/download to your computer

https://westgrid.github.io/calgarySummerSchool2019/4-materials.html
https://westgrid.github.io/calgarySummerSchool2019/4-materials.html

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Downloading Data 1: csv data

We will be working with US Census Data from the 5-year
American Community Survey

Specifically, we will be using the de-identified Public Use
Microdata Sample (PUMS) data from 2013

Point your browser at https://www2.census.gov/
programs-surveys/acs/data/pums/2017/5-Year/ to see
the relevant FTP directory

Download csv_hil.zip to your personal computer (by right
clicking and choosing Save As)

https://www2.census.gov/programs-surveys/acs/data/pums/2017/5-Year/
https://www2.census.gov/programs-surveys/acs/data/pums/2017/5-Year/
csv_hil.zip

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Downloading Data 2: geographies

Working with PUMS data requires the PUMA boundaries and
we will be relating these back to census tracts

Point your browser at
https://www2.census.gov/geo/tiger/TIGER2018/PUMA/

to see the relevant FTP directory

Download tl_2018_17_puma10.zip to your personal
computer (by right clicking and choosing Save As)

Point your browser at https:
//www2.census.gov/geo/tiger/TIGER2018/TRACT/ to see
the relevant FTP directory

Download tl_2018_17_tract.zip to your personal
computer (by right clicking and choosing Save As)

https://www2.census.gov/geo/tiger/TIGER2018/PUMA/
tl_2018_17_puma10.zip
https://www2.census.gov/geo/tiger/TIGER2018/TRACT/
https://www2.census.gov/geo/tiger/TIGER2018/TRACT/
tl_2018_17_tract.zip

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Cluster Architecture: where we will be working

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Transferring Data to ARC on a Mac

We will transfer the data set to your account using the rsync utility

On a Mac: open Terminal

From your Terminal run the following command

rsync -avv path/to/file/csv_hil_18.zip userName@arc.ucalgary.ca:"~"

path/to/file is the full path to the downloaded file

on a mac desktop this would be ∼/Desktop/

userName is your itUserName or guestUserName

you will be prompted for a password, enter your ucalgary email password or the
guest password that you have been given.

If this is your first session signing in, you will be asked to confirm the certificate.
Type yes and press enter.

Once the transfer completes, enter the command: ssh

userName@arc.ucalgary.ca and enter your password again

An ASCII Art “ARC” welcome message should appear.

type unzip csv hil 18.zip and press enter

Repeat this for the other two files that you downloaded.

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Transferring Data to ARC on a Windows PC

On a Windows PC: open MobaXterm

To connect an SSH session, the remote host=arc.ucalgary.ca, user name= your
IT user Name or guest username

You will be prompted for a password and will need to enter either your ucalgary
email password or the guest password that you have been given

If this is your first session signing in, you will be asked to confirm the certificate.
Type yes and press enter

An ASCII Art “ARC” welcome message should appear in the terminal.

When the SSH Session connects an FTP window will appear on the left hand
side. This can be used to upload the zip file graphically.

Once the file has been uploaded, return to the prompt in your Moba terminal,
type unzip csv hil 18.zip and press enter.

Repeat the last two steps for the other two files that you downloaded.

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Jupyter Notebooks on ARC

Why use Notebooks when custom installed environments are
cleaner, faster, and more reliable? They’re Prettier!

https://jupyter.ucalgary.ca:8000/hub/login

Use your itusername and email password to login

Upload any data files that you need to use with the upload
button

Create a new notebook using New > Notebook: Python 3

https://jupyter.ucalgary.ca:8000/hub/login

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Jupyter Notebooks on ARC

Rename notebook by double-clicking on the work Untitled and
changing it in the provided field and clicking the rename
button at the bottom right of the dialogue

To run python code, enter it in the text box / cell and press
the run button (pressing enter will just create a newline) try
out 3+5

The result will be printed below the cell

A new cell will be automatically be created below the cell that
was just run

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Installing Geospatial Libraries

Enter the following text in a cell and run it

!pip install --user -U matplotlib

!pip install --user -U geopandas

!pip install --user -U pysal

When it finishes, restart the kernel by clicking the circular arrow on the

notebook

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Importing Geospatial Libraries

Enter the following text in a cell and run it

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import geopandas as gpd

import pysal as ps

import shapely.geometry

from pyproj import CRS

once it is done, you should not have to run any further imports until the end of the

class. An unimportant warning about sqlite should appear. If you get an error about a

package not being installed then you either did not run the install commands on the

previous slide or you need to restart your notebook.

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Where we are going

PUMS Data:

import pandas as pd

import numpy as np

from pandas import DataFrame,Series

basedf=pd.read_csv('ss13hil.csv')

#what are the columns?

print(list(basedf.columns))

['insp', 'RT', 'SERIALNO', 'DIVISION', 'PUMA', 'REGION', 'ST', 'ADJHSG', 'ADJINC', 'WGTP',

'NP', 'TYPE', 'ACR', 'AGS', 'BATH', 'BDSP', 'BLD', 'BUS', 'CONP', 'ELEP', 'FS', 'FULP', 'GASP', 'HFL',

'MHP', 'MRGI', 'MRGP', 'MRGT', 'MRGX', 'REFR', 'RMSP', 'RNTM', 'RNTP', 'RWAT', 'RWATPR', 'SINK', 'SMP',

'STOV', 'TEL', 'TEN', 'TOIL', 'VACS', 'VALP', 'VEH', 'WATP', 'YBL', 'FES', 'FINCP', 'FPARC', 'GRNTP',

'HHL', 'HHT', 'HINCP', 'HUGCL', 'HUPAC', 'HUPAOC', 'HUPARC', 'KIT', 'LNGI', 'MULTG', 'MV', 'NOC', ...]

#plus 50 more real columns and 80 replication weights

For more information see the pums data dictionary and technical documentation:

https://www2.census.gov/programs-surveys/acs/tech_docs/pums/

https://www2.census.gov/programs-surveys/acs/tech_docs/pums/

Working with Spatial Data

Downloading Data, Accessing ARC, and Example Problem

Where we are going: geopandas is easy to use for data
analysis

What is the mean number of occupants in a census housing unit
for each census tract?

shp_path='tl_2018_17_puma10.shp'

geo_df=gpd.read_file(shp_path)

housingdf=pd.read_csv('psam_h17.csv', dtype={'PUMA':str})

housingdf['weightedNP']=basedf['WGTP']*basedf['NP']

g = housingdf.groupby(['PUMA'])

pumaAvgNPArray=g['weightedNP'].sum() / g['WGTP'].sum()

avgNPdf=pd.DataFrame(pumaAvgNPArray, columns=['avgNP']).reset_index()

fulldf=geo_df.merge(avgNPdf,how='inner',left_on=['PUMACE10'],right_on=['PUMA'])

fig, ax = plt.subplots(1, 1)

fulldf.plot(column='avgNP', ax=ax, legend=True)

Working with Spatial Data

Pandas Preliminaries

Theory

What is pandas?

Pandas provides a SQL-like approach (that blends in elements
of statistics and linear algebra) to analyzing tables of data [3]

DataFrames in R are very similar

Pandas has been adopted as a de facto standard for input and
vectorization across numerous disciplines including Python
data analysis with spatial components

Working with Spatial Data

Pandas Preliminaries

Theory

Loading data from a csv file

basedf=pd.read_csv('ss13hil.csv')

basedf[['SERIALNO', 'PUMA00', 'PUMA10', 'ST', 'ADJHSG', 'ADJINC',

'WGTP', 'NP', 'TYPE', 'ACR', 'AGS', 'BATH', 'BDSP',

'BLD', 'BUS', 'CONP', 'ELEP', 'FS', 'FULP']].head()

Working with Spatial Data

Pandas Preliminaries

Theory

Loading data from a csv file

basedf=pd.read_csv('ss13hil.csv', index_col='SERIALNO',

usecols=['SERIALNO', 'PUMA00', 'PUMA10', 'ST',

'ADJHSG', 'ADJINC', 'WGTP', 'NP', 'TYPE', 'ACR',

'AGS', 'BATH', 'BDSP', 'BLD', 'BUS', 'CONP', 'ELEP',

'FS', 'FULP'])

basedf.head()

Working with Spatial Data

Pandas Preliminaries

Theory

query

query takes a text string argument in the form (roughly) of a SQL
WHERE clause

Column names need to be referenced without quoting so suitable
single-word names are needed

https://pandas.pydata.org/pandas-docs/version/0.22/

indexing.html#indexing-query

basedf.query('PUMA00==3515')

https://pandas.pydata.org/pandas-docs/version/0.22/indexing.html#indexing-query
https://pandas.pydata.org/pandas-docs/version/0.22/indexing.html#indexing-query

Working with Spatial Data

Pandas Preliminaries

Theory

query

The query functionality can work between fields.

However, the only operators that I would rely on are (==, !=, <,

>, <=, >=, &, |)

query() is by default evaluated using the numexpr engine, which
outperforms pure python on DataFrames of more than 200,000 rows

basedf.query('BDSP==NP')

Working with Spatial Data

Pandas Preliminaries

Theory

query

Arithmetic is possible although I can’t speak to its efficiency

The use of in and not in operators as well as ==[’a’,’b’,...],
although parts of this will generally be evaluated using pure python

basedf.query('0<BDSP<NP & PUMA00==3515')

Working with Spatial Data

Pandas Preliminaries

Theory

concat as JOIN

If the indexes are overlapping and the column names are not
the same and axis=1 is used, that is identical to that of
INNER JOIN from SQL

df1=DataFrame({'a':[1,2,3], 'b':[4,5,6]}, index=['x','y','z'])

df2=DataFrame({'c':[7,8,9], 'd':[10,11,12]}, index=['x','y','z'])

pd.concat([df1,df2],axis=1)

Working with Spatial Data

Pandas Preliminaries

Theory

merge as JOIN

merge is a holistic JOIN operator

Like SQL JOINs, the options for using it are complex and take a great deal of
practice to master

We will focus on two options: on= and how=

on determines the common column used to join the two together (a list of
common columns can be specified)

note that the indexes are not preserved. To keep them .reset index() before
joining and then set the index from that column after or join on index (not
covered here)

df1=DataFrame({'a':[1,2,3], 'b':[4,5,6]}, index=['x','y','z'])

df2=DataFrame({'a':[1,2,3], 'c':[10,11,12]}, index=['u','v','w'])

pd.merge(df1,df2,on='a')

Working with Spatial Data

Pandas Preliminaries

Theory

merge as INNER JOIN

how can be set to left, right, inner, or outer

The left on and right on options specify the matching columns
on the left and right join tables if they have different names

Note that the default value of how is inner and this will filter out
non-matching rows symmetrically

df1=DataFrame({'a1':[1,2,3], 'b':[4,5,6]})

df2=DataFrame({'a2':[1,2,7], 'c':[10,11,12]})

pd.merge(df1,df2,how='inner',left_on='a1',right_on='a2')

Working with Spatial Data

Pandas Preliminaries

Theory

merge as multi-key JOIN

By passing a list to each of the on options, the corresponding keys
are matched sequentially

In this case two rows are found to match if and only if the value of
a1 matches a2 and key1 matches key2

df1=DataFrame({'a1':[1,2,3],'key1':['R','R','C'] ,'b':[4,5,6]})

df2=DataFrame({'a2':[1,2,7],'key2':['R','D','C'], 'c':[10,11,12]})

pd.merge(df1,df2,how='outer',left_on=['a1','key1'],right_on=['a2','key2'])

Working with Spatial Data

Pandas Preliminaries

Theory

map for Transforming Columns

.map(f) applies to a Series

It iterates efficiently over every element of the series and
applies the function f to that element

Then it assembles a new Series comprised of the transformed
elements in the same order with the same index and returns it

Weak implicit typing is critical here

ser.map(f)

df['col1'].map(f)

Working with Spatial Data

Pandas Preliminaries

Theory

map for Transforming Columns

basedf['NP_sq']=basedf['NP'].map(lambda x: x**2)

basedf['PUMA_str']=basedf['PUMA'].map(lambda x: 'PUMA:'+str(x))

Working with Spatial Data

Pandas Preliminaries

Theory

Split-Apply-Combine as an overall strategy

Similar to (but more general than) GROUP BY in SQL
General tool for bulk changes
The splitting step breaks data into groups using any column
(including the row number) [3]
This can be accomplished using df.groupby('year')

year author

2002 R Barga
1995 K Subieta
2002 D Lomet
1995 F Ferrandina,
1995 T Meyer

year author

2002 R Barga
2002 D Lomet

year author

1995 K Subieta
1995 F Ferrandina,
1995 T Meyer

Figure 3: Table Split/Fork

Working with Spatial Data

Pandas Preliminaries

Theory

Split-Apply-Combine in more detail

Groups produced by the split can be individually transformed by an
arbitrary function [3]

This is the essence of Apply (the DataFrame extension of Map)

The result is combined back into a single DataFrame

year author
2002 R Barga, D Lomet
1995 K Subieta, F Ferran-

dina,T Meyer

year author
2002 R Barga,

D Lomet

year author
2002 R Barga
2002 D Lomet

year author
1995 K Subieta
1995 F Ferrandina,
1995 T Meyer

year author
1995 K Subieta, F

Ferrandina,T
Meyer

Figure 4: Table Apply + Combine for concatenation

All of this is performed by a single Python interpreter on a single machine.

Working with Spatial Data

Pandas Preliminaries

Theory

apply in action

subdf=basedf.query('PUMA==03515').copy()

def computeWeightedNP(x):

x['weightedNP']=x['NP']*x['WGTP']

return x

subdf=subdf.apply(computeWeightedNP, axis=1)

totals=subdf.sum()

totals['weightedNP']/totals['WGTP']

Out: 1.70737

Working with Spatial Data

Pandas Preliminaries

Theory

apply as CROSS APPLY

def computeWeightedNP(x):

x['weightedNP']=x['NP']*x['WGTP']

#print(x)

totals=x.sum()

x['avgNP']=totals['weightedNP']/totals['WGTP']

return x

subdf.groupby(['PUMA']).apply(computeWeightedNP)

Working with Spatial Data

Pandas Preliminaries

Practice

Problems 1

1 Start from an import of the PUMS csv using the columns
’SERIALNO’, ’PUMA’, ’BDSP’, and ’NP’ (with SERIALNO
as the index and a DataType of str for the PUMA column
using the dtype option). load this to a variable named basedf.

2 Use the command basedf[[’PUMA’]].drop duplicates()

to produce a list of the unique PUMA regions.

3 Using the query command, select only those rows where the
PUMA region number matches one specific one that you
chose to work with from the previous step. How many records
are returned? (look below the readout of sample rows to see a
number) Repeat this for 4 different PUMAs and compare the
counts returned for each. (what is the total?) Can you rewrite
this as a single query using the OR operator? make sure the
resulting counts agree.

Working with Spatial Data

Pandas Preliminaries

Practice

Problems 2

1 Select off two subsets of the data using queries that on
PUMAs. The first should include 01300, 00800, and 00105.
The second should include 00105, 00300, 01104.

2 Use merge to perform and inner join between the two tables
on SERIALNO (HINT use reset index() on each first to make
the old index a column in each table)

3 The resulting table will only have rows that appeared in both.
Which PUMAs belong to the overlap?

Working with Spatial Data

Pandas Preliminaries

Practice

Problems 3

1 Write a map operation that scales NP as an exponent using
the numpy function np.exp

2 Write a variation on the CROSS APPLY above without using
apply

Working with Spatial Data

Pandas Preliminaries

Practice

Solutions 3

import pandas as pd

housingdf=pd.read_csv('psam_h17.csv', dtype={'PUMA':str})

housingdf['weightedNP']=basedf['WGTP']*basedf['NP']

g = housingdf.groupby(['PUMA'])

pumaAvgNPArray=g['weightedNP'].sum() / g['WGTP'].sum()

avgNPdf=pd.DataFrame(pumaAvgNPArray, columns=['avgNP']).reset_index()

Working with Spatial Data

Minimalistic Spatial Data Handling with PySAL and Pandas

Theory

What’s in a GeoDataBase?

A GeoDB has three essential components: [1]

Spatial features (with a Datum and Projection information)

Attributes linked to spatial features

A means of transforming and linking by attribute data or
spatial feature

Pandas gives us a way of managing structured attribute data,
what do we need to add in order to build a usable spatial
analysis data structure

Working with Spatial Data

Minimalistic Spatial Data Handling with PySAL and Pandas

Theory

PySAL for computational geometry

PySAL provides a high level interface for shape objects and
their transformation: pysal.lib.cg

By using PySAL objects, we can read in and handle shape
files (one of the typical formats for spatial data)

We will examine some of the functionality that PySAL grants
us in the context of an object column in a standard Pandas
DataFrame

note that PySAL is also an interface to a wide range of spatial
statistical models and spatial econometric models that are not
accessible from other python libraries [2]

Working with Spatial Data

Minimalistic Spatial Data Handling with PySAL and Pandas

Theory

Loading our Pandas Data and our Shape File

We can begin by loading a standard DataFrame from the csv
data that we are interested in
Note how we have handled the PUMA column
Then we can load the shape file separately using the
ps.lib.io.fileio.FileIO() function
read() is a more fundamental IO method than the
read csv() method and the file handle needs to be closed

import pandas as pd

import pysal as ps

housingdf=pd.read_csv('psam_h17.csv', dtype={'PUMA':str})

shp_path='tl_2018_17_puma10.shp'

f=ps.lib.io.fileio.FileIO(shp_path)

all_polygons=f.read()

f.close()

Working with Spatial Data

Minimalistic Spatial Data Handling with PySAL and Pandas

Theory

Examining our spatial features

The result of reading the shape file is a list of polygons

type(all_polygons)

Out: list

type(all_polygons[0])

Out: pysal.lib.cg.shapes.Polygon

all_polygons[0]

Out: <pysal.lib.cg.shapes.Polygon object at 0x2b33d0388da0>

all_polygons[0].vertices

Out: [(-87.721436, 41.734862), (-87.721417, 41.734863), ...,

(-87.721436, 41.734862)]

What do you think the coordinates in this file are?

Working with Spatial Data

Minimalistic Spatial Data Handling with PySAL and Pandas

Theory

Examining our spatial features

PySAL Shapes include a substantial number of precomputed
attributes and efficient methods

all_polygons[0].centroid

Out: (-87.73227916862234, 41.68628900126081)

all_polygons[0].perimeter

Out: 0.7424176724174986

all_polygons[0].area

Out: 0.010349874158494149

ps.lib.cg.get_shared_segments(all_polygons[0], all_polygons[14])

Out: [<pysal.lib.cg.shapes.LineSegment at 0x2b33d12196a0>,

<pysal.lib.cg.shapes.LineSegment at 0x2b33d12196d8>,

<pysal.lib.cg.shapes.LineSegment at 0x2b33d1219710>,...]

The computed segments are the shared boundary of the two polygons.

Working with Spatial Data

Minimalistic Spatial Data Handling with PySAL and Pandas

Theory

Where is the data associated with the shapes?

In order to capture the attributes associated with the shapes
themselves, we will need to read the associated .dbf file

There are two reasons to do this:

First, the regions probably have some interesting additional data
from the census.

Second, we don’t have labels for these shapes so we can’t link them
to the housingdf!

dfpoly=pd.DataFrame(all_polygons,columns=['polygon'])

dbf_path='tl_2018_17_puma10.dbf'

f2=ps.lib.io.fileio.FileIO(dbf_path)

dbheader=f2.header

dbfile=f2.read()

f2.close()

pd.DataFrame(dbfile, columns=dbheader).head()

Working with Spatial Data

Minimalistic Spatial Data Handling with PySAL and Pandas

Theory

Producing a complete data set

The coordinates of the centroid of the first elements seem to agree

Let’s try and combine them by pd.concat and then join to the csv
file

geo_df1=pd.concat([pd.DataFrame(dbfile, columns=dbheader),dfpoly],axis=1)

geo_df1.head()

pd.merge(geo_df1, housingdf,how='inner',left_on=['PUMACE10'],right_on=['PUMA'])

Working with Spatial Data

Minimalistic Spatial Data Handling with PySAL and Pandas

Theory

Is this enough to get things done?

This is a useful structure (especially for doing complex spatial
statistics)

We can automate complex problems for filtering and
producing attributes derived from spatial features

We have two problems that remain unsolved by this:
projection and fast spatial indexing

geo_df1['computed_area']=geo_df1['polygon'].map(lambda x: x.area)

geo_df1['total_listed_area']=geo_df1.ALAND10+geo_df1.AWATER10

Working with Spatial Data

Minimalistic Spatial Data Handling with PySAL and Pandas

Practice

Problems

1 Following the slides, assemble a dataframe from the csv, dbf,
and shp files name it geo df1

2 Use the code from the “Is this enough...” slide to compute
the area from the polygons and the area listed in the dbf

3 Calculate the ratio of these. Is it possible that this is simply a
change of units of measure? No. These are unprojected shape
files.

4 Use the polygon boundary intersection function
ps.lib.cg.get shared segments(poly1,poly2) and the
.map function with a boolean index to find all of the records
that have shared boundaries with the first polygon (i.e.
adjacent regions)

Working with Spatial Data

Minimalistic Spatial Data Handling with PySAL and Pandas

Practice

Solution 4

poly1=geo_df1['polygon'][0]

f=lambda poly2: ps.lib.cg.get_shared_segments(poly1,poly2)

geo_df1['sharedSegments']=geo_df1['polygon'].map(f)

def listFilter(x):

if x==[]:

return False

else:

return True

geo_df[geo_df['sharedSegments'].map(listFilter)]

Working with Spatial Data

Geopandas Basics

Theory

GeoDataBases made considerably easier

GeoPandas supports almost all Pandas operations in one form
or another

GeoPandas provides easy projection handling

GeoPandas provides R-Tree indexing of GeoDataFrames to
accelerate spatial filtering and joining

Working with Spatial Data

Geopandas Basics

Theory

What is a GeoDataFrame?

A GeoDataFrame is mostly structured like a DataFrame but
has a single column that is a GeoSeries

This links each attribute record to a unique geospatial feature

The GeoSeries column can have any name but by default it is
geometry

The objects in the geometry column are Shapely objects (in
our case Polygons)

The GeoSeries and GeoDataFrame have a single common crs

attribute for characterizing the Coordinate Reference System
and projection data

The GeoSeries and GeoDataFrame have a common spatial
index attribute sindex that implements an R-Tree for the
GeoSeries

Working with Spatial Data

Geopandas Basics

Theory

Loading data to a GeoDataFrame

Is vastly easier than manually assembling linked spatial data
for a Pandas DataFrame

Automatically identifies the corresponding .prj and .dbf files
and incorporates them using fiona

Can still be done manually if something special is needed
(http://geopandas.org/gallery/create_geopandas_
from_pandas.html#

sphx-glr-gallery-create-geopandas-from-pandas-py)

import geopandas as gpd

shp_path='tl_2018_17_puma10.shp'

geo_df=gpd.read_file(shp_path)

http://geopandas.org/gallery/create_geopandas_from_pandas.html#sphx-glr-gallery-create-geopandas-from-pandas-py
http://geopandas.org/gallery/create_geopandas_from_pandas.html#sphx-glr-gallery-create-geopandas-from-pandas-py
http://geopandas.org/gallery/create_geopandas_from_pandas.html#sphx-glr-gallery-create-geopandas-from-pandas-py

Working with Spatial Data

Geopandas Basics

Theory

Examining our GeoDataFrame

The GeoDataFrame has (in one very short step) all of the
information that we manually built into our PySAL supported DF
from the .shp and .dbf files

geo_df.head()

geo_df.geometry.head()

Working with Spatial Data

Geopandas Basics

Theory

What is different about the geometry column

It is a Shapely object not a PySAL cg.Shape object

It has a Coordinate Reference System (crs) imported from
the linked .prj file

type(geo_df.geometry[0])

Out: shapely.geometry.polygon.Polygon

geo_df.crs

Out: {'init': 'epsg:4269'}

This raises a question about what Shapely objects can do
differently from PySAL cg.Shape and how we can analyze the
projection using the crs attribute

Working with Spatial Data

Geopandas Basics

Theory

CRS data

First we need to get a handle on what the crs value means
and if it agrees with the .prj file provided

from pyproj import CRS

wkt_str='GEOGCS["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID["GRS_1980",6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT["Degree",0.017453292519943295]]'

crs_utm = CRS.from_string(wkt_str)

crs_utm.to_proj4()

Out: +proj=longlat +datum=NAD83 +no_defs +type=crs

crs_utm.to_epsg()

Out: 4269

This establishes that the WKT string from the .prj file has been correctly

loaded to the crs. We can learn more about the projection in use by looking it

up on https://spatialreference.org/ref/epsg/nad83/ However, we can

already tell by examining the proj4 string that the data is unprojected because

proj=longlat

https://spatialreference.org/ref/epsg/nad83/

Working with Spatial Data

Geopandas Basics

Theory

What is the difference?

Unprojected data will have the same topological properties but
different distances and directions

We have demonstrated above the the original data comes out with
the wrong areas relative to the dbf file

How bad does it really look? The ratio of length to width goes from
1.4 to 1.75

geo_df.plot()

Working with Spatial Data

Geopandas Basics

Theory

Changes of Projection

Here we chose a semi-arbitrary projection that works on much of North
America but it tailored to the eastern part of Illinois

Generally care is required in choosing your projection, but the most
important thing is consistency

Differently projected data is fundamentally not comparable

geo_df=geo_df.to_crs({'init': 'epsg:26971'})

geo_df.plot()

Working with Spatial Data

Geopandas Basics

Theory

Shapely Polygons

More fundamental then PySAL polygons

Full set theoretic machinery: Intersections, Unions, Contains,
Differencing

More geometrically technical options in general but very efficient

Easy to convert back and forth with PySAL

import shapely.geometry

poly1=geo_df.geometry[0]

type(poly1)

Out: shapely.geometry.polygon.Polygon

poly2=ps.lib.cg.asShape(poly1)

type(poly2)

Out: pysal.lib.cg.shapes.Polygon

poly3=shapely.geometry.polygon.Polygon(shapely.geometry.asShape(poly2))

type(poly3)

Out: shapely.geometry.polygon.Polygon

poly1==poly3

Out: True

Working with Spatial Data

Geopandas Basics

Practice

Problems 1

1 Perform the projection of the geo df GeoDataFrame that was
outlined in the slides

2 Using the shapely area function through GeoPandas (i.e.
geo df.geometry.area) redo the area computation exercise
from the last section

3 What is the percent difference in the projected area of each
PUMA from the stated land+water areas? What is the
maximum observed difference?

4 Use query to find the record with the maximum area
difference use the .plot() function to plot the PUMA with
the biggest error.

5 Use query to plot the PUMAs with a percent error greater
than 0.1, greater than 0.08, and greater than 0.05

6 What part of Illinois is it that has the lowest accuracy of
projection?

Working with Spatial Data

Geopandas Basics

Practice

Problems 2

1 Redo the neighbouring PUMA identification problem but with
a GeoDataFrame (Hint: you will need to convert the Shapely
polygons to PySAL polygons to use the same method)

Working with Spatial Data

Geopandas Basics

Practice

Solution 1

geo_df['statedArea']=geo_df.ALAND10+geo_df.AWATER10

geo_df['computedArea']=geo_df.geometry.area

geo_df['areaDiff']=geo_df['statedArea']-geo_df['computedArea']

geo_df['abs_areaDiff']=geo_df['areaDiff'].abs()

geo_df['frac_areaDiff']=geo_df['abs_areaDiff']/geo_df['statedArea']

geo_df['perc_areaDiff']=geo_df['frac_areaDiff']*100

geo_df['perc_areaDiff'].max()

Out:0.10317568566038449

geo_df.query('perc_areaDiff>0.1')

geo_df.query('perc_areaDiff>0.1').plot()

geo_df.query('perc_areaDiff>0.08').plot()

geo_df.query('perc_areaDiff>0.05').plot()

Western Illinois is the worst part of the projection

Working with Spatial Data

Geopandas Basics

Practice

Solution 2

poly1=ps.lib.cg.asShape(geo_df.geometry[0])

f=lambda poly2: ps.lib.cg.get_shared_segments(poly1,ps.lib.cg.asShape(poly2))

geo_df['sharedSegments']=geo_df.geometry.map(f)

def listFilter(x):

if x==[]:

return False

else:

return True

geo_df[geo_df['sharedSegments'].map(listFilter)]

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Theory

Extending a GeoDataFrame

Joining the PySAL DataFrame to the csv data was obvious with
pd.merge

However, merge with the spatial frame in the right position returns
a DataFrame which would mean giving up our spatial indexing,
CRS, and plotting!

GeoPandas has its own implementations of many standard pandas
analysis functions that accept the same options

Let’s start from the reduced DataFrame that was computed earlier
using the PUMS weights

housingdf['weightedNP']=housingdf['WGTP']*housingdf['NP']

g = housingdf.groupby(['PUMA'])

pumaAvgNPArray=g['weightedNP'].sum() / g['WGTP'].sum()

avgNPdf=pd.DataFrame(pumaAvgNPArray, columns=['avgNP']).reset_index()

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Theory

Extending a GeoDataFrame

AvgNPdf has the same number of records as our geo df table
because we have made use of groupby

Join is 1-1 and can be done as an INNER JOIN

The merge function returns a GeoDataFrame

fulldf=geo_df.merge(avgNPdf,how='inner',left_on=['PUMACE10'],right_on=['PUMA'])

type(fulldf)

Out: geopandas.geodataframe.GeoDataFrame

fulldf.head()

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Theory

GeoDataFrame Queries

Joined data can subsequently be filtered as usual

fulldf.query('avgNP>2.9')

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Theory

Choropleth Plotting

fulldf.plot(column='avgNP')

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Theory

Choropleth Plotting

fig, ax = plt.subplots(1, 1)

fulldf.plot(column='avgNP', ax=ax, legend=True)

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Theory

Filtered Choropleth Plotting

fig, ax = plt.subplots(1, 1)

fulldf.query('avgNP>2.2').plot(column='avgNP', ax=ax, legend=True)

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Theory

Spatial Index Based Filtering

Sometimes, we want to analyze explicit spatial subsets

We could define a mask and test for inclusion row by row

It is much easier to use the spatial index that already exists

fig, ax = plt.subplots(1, 1)

fulldf.cx[250000:,450000:]

returns only records with some portion of the polygon east of 250000 and north of

450000 (in the projected coordinate system)

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Theory

Spatial Index Based Filtering

Plotting works the same way and allows us to focus our attention
on areas of interest

fig, ax = plt.subplots(1, 1)

fulldf.cx[250000:,450000:].plot(column='avgNP', ax=ax, legend=True)

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Theory

Spatial Index Based Filtering

The result can be combined with relational / numerical filtering of
values to find records of interest

fig, ax = plt.subplots(1, 1)

filteredData=fulldf.cx[250000:,450000:].query('avgNP>2.5')

filteredData.plot(column='avgNP', ax=ax, legend=True)

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Practice

Problems 1

1 Using the housingdf imported earlier, modify the code from the
“Extending a GeoDataFrame” slides to compute a new weighted
average data set for the column BDSP (bedrooms per housing unit
sampled)

2 Continue the analysis using the process outlined in this section.
First create a GeoDataFrame that includes both the PUMA shape
data and the PUMS csv data for housing in Illinois

3 Create a choropleth map of the data with a legend to better
understand the distribution of values and how hot spots cluster
spatially in Illinois

Working with Spatial Data

GeoPandas for Combined Spatial and Numerical Analysis

Practice

Problems 2

1 Explore plotting subsets that you query with an expression similar to
the one used above to examine large average NP values, but do this
for your average BDSP data

2 Use spatial indexing to zoom in on a relevant geographic region and
plot the result

3 Finally, apply a more stringent query filter to see the subset of
PUMAs in the high concentration region that have the most
dramatic numbers for average bedrooms per household

Working with Spatial Data

Spatial Joins in GeoPandas using R-Tree Indexing

Theory

Spatial Joins for linking geographies

It is normal to deal with multiple spatial feature sets in
geospatial analysis

Often, different data is attached to each feature and in order
to link data across scales or express connective relationships it
is necessary to perform spatial joins

Spatial Joins can be thought of as a way of forming a join
between two tables of discrete features while using complex
spatial relationships as the join criterion rather than using
matching keys

To understand this we will need a second data set that we can
join to the first

shp_path_t='tl_2018_17_tract.shp'

dft=gpd.read_file(shp_path_t)

dft=dft.to_crs({'init': 'epsg:26971'})

Working with Spatial Data

Spatial Joins in GeoPandas using R-Tree Indexing

Theory

Examining our two geographies

If two feature sets were the same, comparing them would be uninteresting (or at
least very easy)
It is important to make sure that both are using the same projection

dft.cx[300000:,600000:].plot()

fulldf.cx[300000:,600000:].plot()

Working with Spatial Data

Spatial Joins in GeoPandas using R-Tree Indexing

Theory

Adding some simple data to the tract level geography

In the name of expedience, we will append some randomly
generated data to our tract GeoDataFrame

import numpy as np

dft['tract_score']=np.random.normal(1000,150,dft.shape[0])

dft.head()

Working with Spatial Data

Spatial Joins in GeoPandas using R-Tree Indexing

Theory

R-Tree Dependency

In order for sjoin to work, GeoPandas requires an additional
library: rtree

R-Tree is a wrapper for a c-type libspatialindex

To go further with this example, we will need to compile that
and link it to our python distribution

All of the options for accessing this take more time than we
have so the remainder of this talk will be a demonstration

I will post instructions on how to follow up on this on your
own on ARC after the talk.

Working with Spatial Data

Spatial Joins in GeoPandas using R-Tree Indexing

Theory

Basic Join Syntax

gpd.sjoin(df1,df2,how=, op=)

how is analogous to how for relational joins except that it also
specified which geometry column is retained

Options: left (df1 geometry is kept and all records from df1), right
(df2 geometry is kept and all records from df2), inner (df1 geometry
is kept but only matching records from df1)

on is implicit since there is only one GeoSeries per GeoDataFrame

op determines the spatial rule for matching (explanation below for
the left and inner cases)

Options: intersects (any overlap), contains (df1 object entirely
surrounds df2 object), within (df1 object is entirely surrounded by
df2 object)

Working with Spatial Data

Spatial Joins in GeoPandas using R-Tree Indexing

Theory

Basic Join Syntax

joined_data=gpd.sjoin(tractdf,pumsdf,how='left',op='intersects')

Produces a spatially joined GeoDataFrame where the geometry column

retained is the tract level geometry and any records associated with

PUMAs that it intersects would be appended.

Working with Spatial Data

Spatial Joins in GeoPandas using R-Tree Indexing

Theory

Join Example: Multiple Matches

joined_data.shape[0]

Out:493

tractdf.shape[0]

Out:287

joined_data.query('TRACTCE=="803500"')

This result (the joined data table) has the same number of tracts

included as the original filtered tract data, 286.

Working with Spatial Data

Spatial Joins in GeoPandas using R-Tree Indexing

Theory

Join Example: Grouped Data

def f(x):

a=x['avgNP'].max()

y=x.query('avgNP=='+str(a))

return y

result=joined_data.groupby(['TRACTCE']).apply(f)

fig, ax = plt.subplots(1, 1)

result.plot(column='avgNP', ax=ax, legend=True)

Working with Spatial Data

Spatial Joins in GeoPandas using R-Tree Indexing

Theory

Join Example: Appended Columns

fig, ax = plt.subplots(1, 1)

result.plot(column='tract_scor', ax=ax, legend=True)

Working with Spatial Data

Spatial Joins in GeoPandas using R-Tree Indexing

Theory

Join Example: Filtering on Joined Data

fig, ax = plt.subplots(1, 1)

filt_result=result.query('avgNP>2.6&tract_scor>1000')

filt_result.plot(column='tract_scor', ax=ax, legend=True)

Working with Spatial Data

Bibliography

[1] Paul Bolstad. GIS Fundamentals. University of Minnesota,
2012.

[2] Noel A. C. Cressie. Statistics for Spatial Data. Wiley, 2015.

[3] Wes McKinney. Python for Data Analysis. O’Reilly, 2013.

[4] Hanan Samet. Foundations of Multidimensional and Metric
Data Structures. Morgan Kaufmann, 2006.

	Downloading Data, Accessing ARC, and Example Problem
	Pandas Preliminaries
	Theory
	Practice

	Minimalistic Spatial Data Handling with PySAL and Pandas
	Theory
	Practice

	Geopandas Basics
	Theory
	Practice

	GeoPandas for Combined Spatial and Numerical Analysis
	Theory
	Practice

	Spatial Joins in GeoPandas using R-Tree Indexing
	Theory

	Bibliography
	References

