Working with Spatial Data

Working with Spatial Data

Research Computing Summer School 2019

lan Percel

University of Calgary, Research Computing Services

May 30, 2019

Working with Spatial Data

Who is here?

Who has programmed in Python before?
Who has used Pandas before?

Who is familiar with Databases and SQL?
Who has worked with geospatial data before?
Who has used PySAL or GeoPandas before?

Working with Spatial Data

What is this talk about?

m How do we do spatial analysis without a spatial DataBase like
QGIS, PostGRES, or ArcGIS?

m PySAL provides computational geometry at a high level and
can be integrated in to Pandas column. Is this enough?

m GeoPandas provides structures that are more useful for
geographic information science (rather than having to do
geometry manually)

m If we are willing to do some of our own geometric analysis, we
can build our own spatial indexes [4]

m What we won't cover: fast raster computations, fast GDAL
based operations, spatial statistics

Working with Spatial Data

Outline

Downloading Data, Accessing ARC, and Example Problem

Pandas Preliminaries
m Theory
m Practice

Minimalistic Spatial Data Handling with PySAL and Pandas
m Theory
m Practice

Geopandas Basics
m Theory
m Practice

Working with Spatial Data

Outline

GeoPandas for Combined Spatial and Numerical Analysis
m Theory
m Practice

@ Spatial Joins in GeoPandas using R-Tree Indexing
m Theory

Bibliography

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Downloading this presentation

https://westgrid.github.io/calgarySummerSchool2019/
4-materials.html

Right click on the Working with Spatial Data:Presentation link
and Save As/download to your computer

https://westgrid.github.io/calgarySummerSchool2019/4-materials.html
https://westgrid.github.io/calgarySummerSchool2019/4-materials.html

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Downloading Data 1: csv data

m We will be working with US Census Data from the 5-year
American Community Survey

m Specifically, we will be using the de-identified Public Use
Microdata Sample (PUMS) data from 2013

m Point your browser at https://www2.census.gov/
programs-surveys/acs/data/pums/2017/5-Year/ to see
the relevant FTP directory

m Download csv_hil.zip to your personal computer (by right
clicking and choosing Save As)

https://www2.census.gov/programs-surveys/acs/data/pums/2017/5-Year/
https://www2.census.gov/programs-surveys/acs/data/pums/2017/5-Year/
csv_hil.zip

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Downloading Data 2: geographies

m Working with PUMS data requires the PUMA boundaries and
we will be relating these back to census tracts

m Point your browser at
https://www2.census.gov/geo/tiger/TIGER2018/PUMA/
to see the relevant FTP directory

m Download t1_2018_17_pumal0.zip to your personal
computer (by right clicking and choosing Save As)

m Point your browser at https:
//www2.census.gov/geo/tiger/TIGER2018/TRACT/ to see
the relevant FTP directory

m Download t1_2018_17_tract.zip to your personal
computer (by right clicking and choosing Save As)

https://www2.census.gov/geo/tiger/TIGER2018/PUMA/
tl_2018_17_puma10.zip
https://www2.census.gov/geo/tiger/TIGER2018/TRACT/
https://www2.census.gov/geo/tiger/TIGER2018/TRACT/
tl_2018_17_tract.zip

Working with Spatial Data

LDownloading Data, Accessing ARC, and Example Problem

Cluster Architecture: where we will be working

Cluster Components

Login server

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Transferring Data to ARC on a Mac

m We will transfer the data set to your account using the rsync utility
m On a Mac: open Terminal
m From your Terminal run the following command

rsync -avv path/to/file/csv_hil_18.zip userName@arc.ucalgary.ca:"™"

path/to/file is the full path to the downloaded file
on a mac desktop this would be ~/Desktop/
userName is your itUserName or guestUserName

you will be prompted for a password, enter your ucalgary email password or the
guest password that you have been given.

m If this is your first session signing in, you will be asked to confirm the certificate.
Type yes and press enter.

m Once the transfer completes, enter the command: ssh
userName@arc.ucalgary.ca and enter your password again

m An ASCIl Art “ARC” welcome message should appear.
B type unzip csv_hil_18.zip and press enter
m Repeat this for the other two files that you downloaded.

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Transferring Data to ARC on a Windows PC

m On a Windows PC: open MobaXterm

m To connect an SSH session, the remote host=arc.ucalgary.ca, user name= your
IT user Name or guest username

m You will be prompted for a password and will need to enter either your ucalgary
email password or the guest password that you have been given

m If this is your first session signing in, you will be asked to confirm the certificate.
Type yes and press enter

m An ASCII Art “ARC" welcome message should appear in the terminal.

m When the SSH Session connects an FTP window will appear on the left hand
side. This can be used to upload the zip file graphically.

m Once the file has been uploaded, return to the prompt in your Moba terminal,
type unzip csv_hil_18.zip and press enter.

m Repeat the last two steps for the other two files that you downloaded.

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Jupyter Notebooks on ARC

m Why use Notebooks when custom installed environments are
cleaner, faster, and more reliable? They're Prettier!

m https://jupyter.ucalgary.ca:8000/hub/login
m Use your itusername and email password to login

m Upload any data files that you need to use with the upload
button

m Create a new notebook using New > Notebook: Python 3

* Jupyter Logout Control Panel

https://jupyter.ucalgary.ca:8000/hub/login

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Jupyter Notebooks on ARC

m Rename notebook by double-clicking on the work Untitled and
changing it in the provided field and clicking the rename
button at the bottom right of the dialogue

m To run python code, enter it in the text box / cell and press
the run button (pressing enter will just create a newline) try
out 345

m The result will be printed below the cell

m A new cell will be automatically be created below the cell that
was just run
~ Jupyter Untitled Last Checkpoint: a few seconds ago (unsaved changes) @ gt ContolPmal

B 4+ % @B A% AN B C B Co

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Installing Geospatial Libraries

Enter the following text in a cell and run it

'pip install --user -U matplotlib
!pip install --user -U geopandas
'pip install --user -U pysal

When it finishes, restart the kernel by clicking the circular arrow on the
notebook

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Importing Geospatial Libraries

Enter the following text in a cell and run it

import numpy as np

import matplotlib.pyplot as plt
import pandas as pd

import geopandas as gpd

import pysal as ps

import shapely.geometry

from pyproj import CRS

once it is done, you should not have to run any further imports until the end of the
class. An unimportant warning about sqlite should appear. If you get an error about a
package not being installed then you either did not run the install commands on the

previous slide or you need to restart your notebook.

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Where we are going

PUMS Data:

import pandas as pd
import numpy as np
from pandas import DataFrame,Series

basedf=pd.read_csv('ss13hil.csv')
#what are the columns?
print(list(basedf.columns))

['insp', 'RT', 'SERIALNO', 'DIVISION', 'PUMA', 'REGION', 'ST', 'ADJHSG', 'ADJINC', 'WGTP',

'NP', 'TYPE', 'ACR', 'AGS', 'BATH', 'BDSP', 'BLD', 'BUS', 'CONP', 'ELEP', 'FS', 'FULP', 'GASP', 'HFL',
'MHP', 'MRGI', 'MRGP', 'MRGT', 'MRGX', 'REFR', 'RMSP', 'RNTM', 'RNTP', 'RWAT', 'RWATPR', 'SINK', 'SMP',
'sTov', 'TEL', 'TEN', 'TOIL', 'VACS', 'VALP', 'VEH', 'WATP', 'YBL', 'FES', 'FINCP', 'FPARC', 'GRNTP',

'HHL', 'HHT', 'HINCP', 'HUGCL', 'HUPAC', 'HUPAOC', 'HUPARC', 'KIT', 'LNGI', 'MULTG', 'MV', 'NOC', ...]
#plus 50 more real columns and 80 replication weights

For more information see the pums data dictionary and technical documentation:

https://www2.census.gov/programs-surveys/acs/tech_docs/pums/

https://www2.census.gov/programs-surveys/acs/tech_docs/pums/

Working with Spatial Data
LDownloading Data, Accessing ARC, and Example Problem

Where we are going: geopandas is easy to use for data
analysis

What is the mean number of occupants in a census housing unit
for each census tract?

shp_path='t1_2018_17_pumalQ.shp'

geo_df=gpd.read_file(shp_path)

housingdf=pd.read_csv('psam_h17.csv', dtype={'PUMA':str})

housingdf ['weightedNP']=basedf ['WGTP']*basedf ['NP']

g = housingdf.groupby(['PUMA'])

pumaAvgNPArray=g['weightedNP'].sum() / g['WGTP'].sum()

avgNPdf=pd.DataFrame (pumaAvgNPArray, columns=['avgNP']).reset_index()
fulldf=geo_df .merge (avgNPdf ,how="'inner',left_on=['PUMACE10'],right_on=['PUMA'])
fig, ax = plt.subplots(l, 1)

fulldf.plot (column="'avgNP', ax=ax, legend=True)

00000 |] 28

26
500000 {

24
00000 {

2
200000 { »
200000 { 18
100000 { 16

.

00000 400000

Working with Spatial Data
LPandas Preliminaries
L'I'heory

What is pandas?

m Pandas provides a SQL-like approach (that blends in elements
of statistics and linear algebra) to analyzing tables of data [3]

m DataFrames in R are very similar

m Pandas has been adopted as a de facto standard for input and
vectorization across numerous disciplines including Python
data analysis with spatial components

Working with Spatial Data
LPandas Preliminaries
L'I'heory

Loading data from a csv file

basedf=pd.read_csv('ss13hil.csv"')

basedf [['SERIALNO', 'PUMAOO', 'PUMA10', 'ST', 'ADJHSG', 'ADJINC'
'WGTP', 'NP', 'TYPE', 'ACR', 'AGS', 'BATH', 'BDSP',
'BLD', 'BUS', 'CONP', 'ELEP', 'FS', 'FULP']].head()

SERIALNO PUMA00 PUMA10 ST ADJHSG ADJINC WGTP NP TYPE ACR AGS BATH BDSP BLD BUS CONP ELEP FS FULP

0 2009000000061 3515 -9 17 1086032 1085467 % 0 1 NaN NaN 20 20 80 NaN 0.0 NaN NaN NaN
1 2009000000075 1000 -9 17 1086032 1085467 6 1 1 1.0 NaN 1.0 30 10 20 0.0 2000 20 20
2 2009000000108 3402 -9 17 1086032 1085467 15 3 1 10 NaN 10 30 20 20 00 800 20 20
3 2009000000132 3510 -9 17 1086032 1085467 60 4 1 1.0 NaN 1.0 30 20 20 0.0 1.0 20 20
4 2009000000150 3518 -9 17 1086032 1085467 37 3 1 1.0 NaN 1.0 30 20 20 0.0 2000 1.0 20

Working with Spatial Data
LPandas Preliminaries
L'I'heory

Loading data from a csv file

basedf=pd.read_csv('ss13hil.csv', index_col='SERIALNO',
usecols=['SERIALNO', 'PUMAOO', 'PUMA10', 'ST',
'"ADJHSG', 'ADJINC', 'WGTP', 'NP', 'TYPE', 'ACR',
'"AGS', 'BATH', 'BDSP', 'BLD', 'BUS', 'CONP', 'ELEP',
'FS', 'FULP'])

basedf .head ()

PUMAO0 PUMA10 ST ADJHSG ADJINC WGTP NP TYPE ACR AGS BATH BDSP BLD BUS CONP ELEP FS FULP

SERIALNO
2009000000061 3515 -9 17 1086032 1085467 3 0 1 NaN NaN 20 20 80 NaN 00 NaN NaN NaN
2009000000075 1000 -9 17 1086032 1085467 6 1 1 1.0 NaN 1.0 30 1.0 20 0.0 2000 20 20
2009000000108 3402 -9 17 1086032 1085467 15 1 1.0 NaN 1.0 30 20 20 00 800 20 20
2009000000132 3510 -9 17 1086032 1085467 60 NaN 1.0 30 20 20 0.0 10 20 20

=
© o
o

2009000000150 3518 -9 1 1086032 1085467 37 1 1.0 NaN 1.0 30 20 20 0.0 2000 1.0 20

Working with Spatial Data
LPandas Preliminaries
L'I'heory

query

m query takes a text string argument in the form (roughly) of a SQL
WHERE clause

m Column names need to be referenced without quoting so suitable
single-word names are needed

m https://pandas.pydata.org/pandas-docs/version/0.22/
indexing.html#indexing-query

basedf . query ('PUMAO0==3515")

PUMAOD PUMA10 ST ADJHSG ADJNC WGTP NP TYPE ACR AGS BATH BDSP BLD BUS CONP ELEP FS FULP

SERIALNO
2009000000061 3515 -9 17 1086032 1085467 % 0 1 NaN NaN 20 20 80 NaN 00 NaN NaN NaN
2009000002489 3515 -9 17 1086032 1085467 151 1 20 10 10 20 20 20 00 500 10 10
2009000002611 3515 -9 17 1086032 1085467 9 2 1 NaN NaN 1.0 10 60 NaN 00 500 20 20
2009000002724 3515 -3 17 1086032 1085467 45 1 1 10 NaN 10 30 20 20 00 400 20 20
2009000006025 3515 -9 17 1086032 1085467 17 2 1 NaN NaN 10 20 40 NaN 00 1000 20 20
2009000009853 3515 -9 17 1086032 1085467 144 1 10 NaN 10 40 20 20 00 1500 20 20
2009000010773 3515 -9 17 1086032 1085467 18 2 1 10 NaN 10 30 30 20 00 1100 20 20

https://pandas.pydata.org/pandas-docs/version/0.22/indexing.html#indexing-query
https://pandas.pydata.org/pandas-docs/version/0.22/indexing.html#indexing-query

Working with Spatial Data
LPandas Preliminaries
L'I'heory

query

m The query functionality can work between fields.

m However, the only operators that | would rely on are (==, !'=, <,
>’ <=: >=: &’ |)

m query() is by default evaluated using the numexpr engine, which
outperforms pure python on DataFrames of more than 200,000 rows

basedf.query('BDSP==NP"')

PUMAO0 PUMA10 ST ADJHSG ADJINC WGTP NP TYPE ACR AGS BATH BDSP BLD BUS CONP ELEP FS FULP

SERIALNO
2009000000108 3402 -9 17 1086032 1085467 15 3 1 10 NaN 10 30 20 20 00 800 20 20
2009000000150 3518 -9 17 1086032 1085467 37 3 1 10 NaN 10 30 20 20 0.0 2000 1.0 20
2009000000225 3402 -9 17 1086032 1085467 19 2 1 NaN NaN 1.0 20 90 NaN 00 10 20 20
2009000000256 600 -9 17 1086032 1085467 2% 2 1 NaN NaN 1.0 20 7.0 NaN 00 900 10 20
2009000000335 2700 -9 17 1086032 1085467 28 1 1 NaN NaN 1.0 10 50 NaN 0.0 600 20 20
2009000000461 400 -9 17 1086032 1085467 43 4 1 1.0 NaN 1.0 40 20 20 0.0 100.0 1.0 20

Working with Spatial Data
LPandas Preliminaries
L'I'heory

query

m Arithmetic is possible although | can't speak to its efficiency

m The use of in and not in operators as well as ==[’a’,’b’,...],
although parts of this will generally be evaluated using pure python

basedf .query('0<BDSP<NP & PUMA00==3515")

PUMAOO PUMA10 ST ADJHSG ADJING WGTP NP TYPE ACR AGS BATH BDSP BLD BUS CONP ELEP FS FULP
SERIALNO

2009000002611 3515 9 17 1086032 1085467 49 2 1 NaN NaN 1.0 10 60 NaN 00 500 20 20
2009000013780 3515 9 17 1086032 1085467 20 3 1 NaN NaN 1.0 20 4.0 NaN 0.0 140.0 2.0 20
2009000022871 3515 -9 17 1086032 1085467 27 7 1 1.0 NaN 1.0 40 20 20 0.0 70.0 1.0 20
2009000024254 3515 9 17 1086032 1085467 15 4 1 NaN NaN 10 20 50 NaN 00 1000 1.0 20
2009000030494 3515 9 17 1086032 1085467 39 6 1 NaN NaN 1.0 20 7.0 NaN 00 1200 1.0 20
2009000046340 3515 9 17 1086032 1085467 40 4 1 NaN NaN 1.0 30 50 NaN 00 800 1.0 20

Working with Spatial Data
LPandas Preliminaries
L'I'heory

concat as JOIN

m If the indexes are overlapping and the column names are not
the same and axis=1 is used, that is identical to that of
INNER JOIN from SQL

dfi=DataFrame({'a':[1,2,3], 'b':[4,5,6]}, index=['x','y','z'])
df2=DataFrame({'c':[7,8,9], 'd':[10,11,12]}, index=['x','y','z'])
pd.concat ([df1,df2] ,axis=1)

»
-
o (9] £ o

Working with Spatial Data
LPandas Preliminaries
L'I'heory

merge as JOIN

m merge is a holistic JOIN operator

m Like SQL JOINs, the options for using it are complex and take a great deal of
practice to master

m We will focus on two options: on= and how=

m on determines the common column used to join the two together (a list of
common columns can be specified)

B note that the indexes are not preserved. To keep them .reset_index() before
joining and then set the index from that column after or join on index (not
covered here)

dfi=DataFrame({'a':[1,2,3], 'b':[4,5,6]}, index=['x','y','z'])
df2=DataFrame({'a':[1,2,3], 'c':[10,11,12]}, index=['u','v','w'])
pd.merge(df1,df2,on="'a')

Working with Spatial Data
LPandas Preliminaries
L'I'heory

merge as INNER JOIN

m how can be set to left, right, inner, or outer

m The left_on and right_on options specify the matching columns
on the left and right join tables if they have different names

m Note that the default value of how is inner and this will filter out
non-matching rows symmetrically

dfi1=DataFrame({'al':[1,2,3], 'b':[4,5,6]3})
df2=DataFrame({'a2':[1,2,7], 'c':[10,11,121})
pd.merge(df1,df2,how="'inner',left_on='al',right_on='a2')

Working with Spatial Data
LPandas Preliminaries
L'I'heory

merge as multi-key JOIN

m By passing a list to each of the on options, the corresponding keys
are matched sequentially

m In this case two rows are found to match if and only if the value of

al matches a2 and keyl matches key2

df1=DataFrame({'al':[1,2,3],'keyl':['R','R','C'] ,'b':[4,5,6]1})
df2=DataFrame({'a2':[1,2,7], 'key2':['R','D','C'], 'c':[10,11,12]})
pd.merge(df1,df2,how="'outer',left_on=['al','keyl'],right_on=['a2', 'key2'])

al keyl b a2 key2 c

1.0 R 40 10 R 100

2.0 R 50 NaN NaN NaN

o
1
2 30 C 60 NaN NaN NaN
3 NaN NaN NaN 20 D 110
4

NaN NaN NaN 7.0 c 120

Working with Spatial Data
LPandas Preliminaries
L'I'heory

map for Transforming Columns

m .map(f) applies to a Series

m It iterates efficiently over every element of the series and
applies the function £ to that element

m Then it assembles a new Series comprised of the transformed
elements in the same order with the same index and returns it

m Weak implicit typing is critical here

ser.map (f)
df['coll'] .map(f)

Working with Spatial Data
LPandas Preliminaries
L'I'heory

map for Transforming Columns

basedf ['NP_sq']=basedf ['NP'] .map(lambda x: x**2)
basedf ['PUMA_str']=basedf ['PUMA'] .map(lambda x: 'PUMA:'+str(x))

Working with Spatial Data
LPandas Preliminaries
L'I'heory

Split-Apply-Combine as an overall strategy

m Similar to (but more general than) GROUP BY in SQL

m General tool for bulk changes

m The splitting step breaks data into groups using any column
(including the row number) [3]

m This can be accomplished using df . groupby ('year"')

year ‘ author
2002 | R Barga
—"1 2002 | D Lomet

year author
2002 R Barga
1995 K Subieta

2002 D Lomet year ‘ author

1995 | F Ferrandina, | | 1995 | K Subieta

1995 T Meyer 1995 | F Ferrandina,
1995 T Meyer

Figure 3: Table Split/Fork

Working with Spatial Data
LPandas Preliminaries
L'I'heory

Split-Apply-Combine in more detail

m Groups produced by the split can be individually transformed by an
arbitrary function [3]

m This is the essence of Apply (the DataFrame extension of Map)

m The result is combined back into a single DataFrame

year ‘ author year ‘ author

2002 R Barga 2002 R Barga,

2002 D Lomet D Lomet

\ year | author
2002 R Barga, D Lomet

year | author year | author 1995 K Subieta, F Ferran-
1995 K Subieta N 1995 K Subieta, F — dina, T Meyer
1995 F Ferrandina, Ferrandina, T
1995 T Meyer Meyer

Figure 4: Table Apply + Combine for concatenation

All of this is performed by a single Python interpreter on a single machine.

Working with Spatial Data
LPandas Preliminaries
L'I'heory

apply in action

subdf=basedf .query ('PUMA==03515") .copy ()
def computeWeightedNP(x):
x['weightedNP']=x['NP']*x['WGTP']
return x
subdf=subdf .apply(computeWeightedNP, axis=1)
totals=subdf.sum()
totals['weightedNP']/totals['WGTP']
OQut: 1.70737

Working with Spatial Data
LPandas Preliminaries
L'I'heory

apply as CROSS APPLY

def computeWeightedNP (x):
x['weightedNP']=x['NP']*x['WGTP']
#print (x)
totals=x.sum()
x['avgNP']=totals['weightedNP']/totals['WGTP']
return x

subdf . groupby (['PUMA']) . apply (computeWeightedNP)

Working with Spatial Data
LPandas Preliminaries
LPractice

Problems 1

Start from an import of the PUMS csv using the columns
'SERIALNO’, 'PUMA’, 'BDSP’, and 'NP’ (with SERIALNO
as the index and a DataType of str for the PUMA column
using the dtype option). load this to a variable named basedf.

Use the command basedf [[’PUMA’]] .drop_duplicates()
to produce a list of the unique PUMA regions.

Using the query command, select only those rows where the
PUMA region number matches one specific one that you
chose to work with from the previous step. How many records
are returned? (look below the readout of sample rows to see a
number) Repeat this for 4 different PUMAs and compare the
counts returned for each. (what is the total?) Can you rewrite
this as a single query using the OR operator? make sure the
resulting counts agree.

Working with Spatial Data
LPandas Preliminaries
LPractice

Problems 2

Select off two subsets of the data using queries that on
PUMAs. The first should include 01300, 00800, and 00105.
The second should include 00105, 00300, 01104.

Use merge to perform and inner join between the two tables
on SERIALNO (HINT use reset_index() on each first to make
the old index a column in each table)

The resulting table will only have rows that appeared in both.
Which PUMAs belong to the overlap?

Working with Spatial Data
LPandas Preliminaries
LPractice

Problems 3

Write a map operation that scales NP as an exponent using
the numpy function np.exp

Werite a variation on the CROSS APPLY above without using
apply

Working with Spatial Data
LPandas Preliminaries
LPractice

Solutions 3

import pandas as pd

housingdf=pd.read_csv('psam_h17.csv', dtype={'PUMA':str})

housingdf ['weightedNP']=basedf ['WGTP']*basedf['NP']

g = housingdf.groupby(['PUMA'])

pumaAvgNPArray=g['weightedNP'].sum() / g['WGTP'].sum()
avgNPdf=pd.DataFrame (pumaAvgNPArray, columns=['avgNP']).reset_index()

Working with Spatial Data
L Minimalistic Spatial Data Handling with PySAL and Pandas
L'I'heory

What's in a GeoDataBase?

m A GeoDB has three essential components: [1]

m Spatial features (with a Datum and Projection information)

m Attributes linked to spatial features

® A means of transforming and linking by attribute data or
spatial feature

m Pandas gives us a way of managing structured attribute data,

what do we need to add in order to build a usable spatial
analysis data structure

Working with Spatial Data
L Minimalistic Spatial Data Handling with PySAL and Pandas
L'I'heory

PySAL for computational geometry

m PySAL provides a high level interface for shape objects and
their transformation: pysal.lib.cg

m By using PySAL objects, we can read in and handle shape
files (one of the typical formats for spatial data)

m We will examine some of the functionality that PySAL grants
us in the context of an object column in a standard Pandas
DataFrame

m note that PySAL is also an interface to a wide range of spatial
statistical models and spatial econometric models that are not
accessible from other python libraries [2]

Working with Spatial Data
L Minimalistic Spatial Data Handling with PySAL and Pandas
L'I'heory

Loading our Pandas Data and our Shape File

m We can begin by loading a standard DataFrame from the csv
data that we are interested in

m Note how we have handled the PUMA column

m Then we can load the shape file separately using the
ps.lib.io.fileio.FileIO() function

m read() is a more fundamental IO method than the
read_csv() method and the file handle needs to be closed

import pandas as pd
import pysal as ps

housingdf=pd.read_csv('psam_h17.csv', dtype={'PUMA':str})
shp_path='t1_2018_17_pumalO.shp'
f=ps.lib.io.fileio.FileIO(shp_path)

all_polygons=f.read()

f.close()

Working with Spatial Data
L Minimalistic Spatial Data Handling with PySAL and Pandas
L'I'heory

Examining our spatial features

m The result of reading the shape file is a list of polygons

type(all_polygons)

Out: list

type (all_polygons[0])

OQut: pysal.lib.cg.shapes.Polygon

all_polygons [0]

Out: <pysal.lib.cg.shapes.Polygon object at 0x2b33d0388da0>

all_polygons[0] .vertices

Out: [(-87.721436, 41.734862), (-87.721417, 41.734863), ...,
(-87.721436, 41.734862)]

What do you think the coordinates in this file are?

Working with Spatial Data
L Minimalistic Spatial Data Handling with PySAL and Pandas
L'I'heory

Examining our spatial features

m PySAL Shapes include a substantial number of precomputed
attributes and efficient methods

all_polygons[0].centroid

Out: (-87.73227916862234, 41.68628900126081)

all_polygons[0] .perimeter

Out: 0.7424176724174986

all_polygons[0] .area

Out: 0.010349874158494149

ps.lib.cg.get_shared_segments(all_polygons[0], all_polygons[14])
Out: [<pysal.lib.cg.shapes.LineSegment at 0x2b33d12196a0>,
<pysal.lib.cg.shapes.LineSegment at 0x2b33d1219648>,
<pysal.lib.cg.shapes.LineSegment at 0x2b33d1219710>,...]

The computed segments are the shared boundary of the two polygons.

Working with Spatial Data
L Minimalistic Spatial Data Handling with PySAL and Pandas
L'I'heory

Where is the data associated with the shapes?

m In order to capture the attributes associated with the shapes
themselves, we will need to read the associated .dbf file

m There are two reasons to do this:

m First, the regions probably have some interesting additional data
from the census.

m Second, we don’t have labels for these shapes so we can’t link them
to the housingdf!

dfpoly=pd.DataFrame(all_polygons,columns=['polygon'])
dbf_path='t1_2018_17_pumalO.dbf'
f2=ps.lib.io.fileio.FileIO(dbf_path)
dbheader=£f2.header

dbfile=f2.read()

£2.close()

pd.DataFrame(dbfile, columns=dbheader).head()

STATEFP10 PUMACE10 GEOID10 NAMELSAD10 MTFCC10 FUNCSTAT1O ALAND10 AWATER10 INTPTLAT1O INTPTLON10

) 17 03411 1703411 Cook County (South Gentrall-Worlh & 120 S 94120155 1576803 +41.7313634 -087.7167725

1 17 03107 1703107 Wil County (Northeast)-Franklort Homer & g5 S 243596923 478565 4415528956 -087.9168232

Working with Spatial Data
L Minimalistic Spatial Data Handling with PySAL and Pandas
L'I'heory

Producing a complete data set

m The coordinates of the centroid of the first elements seem to agree

m Let's try and combine them by pd.concat and then join to the csv
file

geo_df1=pd.concat ([pd.DataFrame(dbfile, columns=dbheader),dfpoly],axis=1)

geo_df1l.head()

STATEFP10 PUMACE10 GEOID10 NAMELSAD10 MTFCC10 FUNCSTAT10 ALAND10 AWATER10 INTPTLAT10 INTPTLON10 polygon
Gook County

(South . <pysal.lib.cg.shapes.Polygon

0 17 03411 1703411 Central)--Worth G6120 S 94129156 1576803 +41.7313634 -087.7167725 object at 0x2b33d...
& Calumet T...
Will County

(Northeast)-- ; <pysallib.cg.shapes.Polygon

1 17 03107 1703107 Frankfort, G6120 S 243596923 478565 +41.5528956 -087.9168232 object at 0x2b33d...
Homer & Ne...
Kendall &

Grundy ; <pysal.lib.cg.shapes.Polygon

2 17 03700 1703700 Counties G6120 S 1912412909 37262592 +41.4200983 -088.4339373 object at 0x2b33d...
PUMA

McLean ; <pysal.lib.cg.shapes.Polygon

3 17 02000 1702000 County PUMA G6120 S 3064559693 7853695 +40.4945594 -088.8445391 object at 0x2b33d...

pd.merge(geo_df1l, housingdf,how='inner',left_on=['PUMACE10'],right_on=['PUMA'])

Working with Spatial Data
L Minimalistic Spatial Data Handling with PySAL and Pandas
L'I'heory

Is this enough to get things done?

m This is a useful structure (especially for doing complex spatial
statistics)

m We can automate complex problems for filtering and
producing attributes derived from spatial features

m We have two problems that remain unsolved by this:
projection and fast spatial indexing

geo_df1['computed_area']=geo_dfl['polygon'].map(lambda x: x.area)
geo_df1['total_listed_area']l=geo_dfl.ALAND10+geo_df1.AWATER10

Working with Spatial Data
L Minimalistic Spatial Data Handling with PySAL and Pandas
LPractice

Problems

Following the slides, assemble a dataframe from the csv, dbf,
and shp files name it geo_dfl

Use the code from the “Is this enough..." slide to compute
the area from the polygons and the area listed in the dbf

Calculate the ratio of these. Is it possible that this is simply a
change of units of measure? No. These are unprojected shape
files.

Use the polygon boundary intersection function
ps.lib.cg.get_shared segments(polyl,poly2) and the
.map function with a boolean index to find all of the records
that have shared boundaries with the first polygon (i.e.
adjacent regions)

Working with Spatial Data
L Minimalistic Spatial Data Handling with PySAL and Pandas
LPractice

Solution 4

polyl=geo_df1['polygon'] [0]
f=lambda poly2: ps.lib.cg.get_shared_segments(polyl,poly2)
geo_df1['sharedSegments']=geo_dfi['polygon'].map(f)
def listFilter(x):
if x==[]:
return False
else:
return True

geo_df [geo_df ['sharedSegments'] .map(listFilter)]

Working with Spatial Data
LGeopandas Basics
L'I'heory

GeoDataBases made considerably easier

m GeoPandas supports almost all Pandas operations in one form
or another

m GeoPandas provides easy projection handling

m GeoPandas provides R-Tree indexing of GeoDataFrames to
accelerate spatial filtering and joining

Working with Spatial Data
LGeopandas Basics
L'I'heory

What is a GeoDataFrame?

m A GeoDataFrame is mostly structured like a DataFrame but
has a single column that is a GeoSeries

m This links each attribute record to a unique geospatial feature

m The GeoSeries column can have any name but by default it is
geometry

m The objects in the geometry column are Shapely objects (in
our case Polygons)

m The GeoSeries and GeoDataFrame have a single common crs
attribute for characterizing the Coordinate Reference System
and projection data

m The GeoSeries and GeoDataFrame have a common spatial
index attribute sindex that implements an R-Tree for the
GeoSeries

Working with Spatial Data
LGeopandas Basics
L'I'heory

Loading data to a GeoDataFrame

m Is vastly easier than manually assembling linked spatial data
for a Pandas DataFrame

m Automatically identifies the corresponding .prj and .dbf files
and incorporates them using fiona

m Can still be done manually if something special is needed
(http://geopandas.org/gallery/create_geopandas_
from_pandas.html#
sphx-glr-gallery-create-geopandas-from-pandas-py)

import geopandas as gpd

shp_path='t1_2018_17_pumalO.shp'
geo_df=gpd.read_file(shp_path)

http://geopandas.org/gallery/create_geopandas_from_pandas.html#sphx-glr-gallery-create-geopandas-from-pandas-py
http://geopandas.org/gallery/create_geopandas_from_pandas.html#sphx-glr-gallery-create-geopandas-from-pandas-py
http://geopandas.org/gallery/create_geopandas_from_pandas.html#sphx-glr-gallery-create-geopandas-from-pandas-py

Working with Spatial Data
LGeopandas Basics
L'I'heory

Examining our GeoDataFrame

m The GeoDataFrame has (in one very short step) all of the
information that we manually built into our PySAL supported DF
from the .shp and .dbf files

geo_df .head ()

STATEFP10 PUMACEID GEOID10 NAMELSAD10 MTFCC10 FUNCSTATIO ALANDIO AWATER10 INTPTLATiO INTPTLON1O geometry
Gook County (South «7:?‘7-!?4%2
o 17 03411 1703411 Central)-Worth& Go120 S 94120155 1576803 +41.7313634 -0B7.7167725 SR
e -87.721417 41
Wil County POLYGON
(Northeast)- . p (+87.860787
1 17 03107 703107 SoheRst gt0 S 243506023 478565 +41.5520056 -087.9166262 iy
Ne... -87.857296 41...
POLYGON
2 17 os700 1703700 MEAACHMY Geizg S 1912412909 37262592 +41.4200083 -088.4339373 (-88.26809799999999
ounties PUMA
1.724544, -88.26..
MoLoan . LYGON
s 7 oo oo MelemnCmny g S aOSSONE 76E005 44D40ISSOA OBBBUSIRT (885253050560908
40.75033699999099.
POLYGON
MEEHEniD (86.494249
4 17 01602 1701602 Wit Piait, Moulirie, G6120 S 254202416 88234698 4307690432 -089.2258108 z

39215001,

Shelb. -88.4992949999...

geo_df .geometry.head ()

POLYGON ((-87.721436 41.734862, -87.721417 41...
POLYGON ((-87.860787 41.557522, -87.857298 41..
POLYGON ((-88.26809799999999 41.724544, -88.26.
POLYGON ((-88.92933099999999 40.75333699999999.
POLYGON ((-88.494249 39.215001, -88.4992949999...
Name: geometry, dtype: object

S WN e o

Working with Spatial Data
LGeopandas Basics
L'I'heory

What is different about the geometry column

m It is a Shapely object not a PySAL cg.Shape object

m It has a Coordinate Reference System (crs) imported from
the linked .prj file

type(geo_df .geometry[0])

Out: shapely.geometry.polygon.Polygon
geo_df .crs

Out: {'init': 'epsg:4269'}

This raises a question about what Shapely objects can do
differently from PySAL cg.Shape and how we can analyze the
projection using the crs attribute

Working with Spatial Data
LGeopandas Basics
L'I'heory

CRS data

m First we need to get a handle on what the crs value means
and if it agrees with the .prj file provided

from pyproj import CRS

wkt_str='GEOGCS["GCS_North_American_1983" ,DATUM["D_North_America
crs_utm = CRS.from_string(wkt_str)

crs_utm.to_proj4()

OQut: +proj=longlat +datum=NAD83 +no_defs +type=crs
crs_utm.to_epsg()

Out: 4269

This establishes that the WKT string from the .prj file has been correctly
loaded to the crs. We can learn more about the projection in use by looking it
up on https://spatialreference.org/ref/epsg/nad83/ However, we can
already tell by examining the proj4 string that the data is unprojected because

proj=longlat

https://spatialreference.org/ref/epsg/nad83/

Working with Spatial Data

L Geopandas Basics

LTheory

What is the difference?

m Unprojected data will have the same topological properties but
different distances and directions

m We have demonstrated above the the original data comes out with
the wrong areas relative to the dbf file

m How bad does it really look? The ratio of length to width goes from
1.4 to 1.75

geo_df.plot()

42

a

39

Working with Spatial Data

L Geopandas Basics

LTheory

Changes of Projection

m Here we chose a semi-arbitrary projection that works on much of North
America but it tailored to the eastern part of lllinois

m Generally care is required in choosing your projection, but the most
important thing is consistency

m Differently projected data is fundamentally not comparable

geo_df=geo_df.to_crs({'init': 'epsg:26971'})
geo_df.plot()

600000

500000

400000

300000

200000

100000

200000 400000

Working with Spatial Data
LGeopandas Basics
L'I'heory

Shapely Polygons

m More fundamental then PySAL polygons

m Full set theoretic machinery: Intersections, Unions, Contains,
Differencing

m More geometrically technical options in general but very efficient
m Easy to convert back and forth with PySAL

import shapely.geometry
polyl=geo_df.geometry[0]

type(polyl)

Out: shapely.geometry.polygon.Polygon
poly2=ps.lib.cg.asShape(polyl)

type (poly2)

Out: pysal.lib.cg.shapes.Polygon
poly3=shapely.geometry.polygon.Polygon(shapely.geometry.asShape(poly2))
type (poly3)

Out: shapely.geometry.polygon.Polygon
polyl==poly3

Out: True

Working with Spatial Data
LGeopandas Basics
LPractice

Problems 1

Perform the projection of the geo_df GeoDataFrame that was
outlined in the slides

Using the shapely area function through GeoPandas (i.e.
geo_df .geometry.area) redo the area computation exercise
from the last section

What is the percent difference in the projected area of each
PUMA from the stated land+water areas? What is the
maximum observed difference?

Use query to find the record with the maximum area
difference use the .plot () function to plot the PUMA with
the biggest error.

Use query to plot the PUMASs with a percent error greater
than 0.1, greater than 0.08, and greater than 0.05

@ What part of lllinois is it that has the lowest accuracy of
projection?

Working with Spatial Data
LGeopandas Basics
LPractice

Problems 2

Redo the neighbouring PUMA identification problem but with
a GeoDataFrame (Hint: you will need to convert the Shapely
polygons to PySAL polygons to use the same method)

Working with Spatial Data
LGeopandas Basics
LPractice

Solution 1

geo_df ['statedArea']=geo_df .ALAND10+geo_df.AWATER10

geo_df [' computedArea']=geo_df.geometry.area

geo_df ['areaDiff']=geo_df ['statedArea']-geo_df ['computedArea’]
geo_df ['abs_areaDiff']=geo_df['areaDiff'].abs()

geo_df ['frac_areaDiff']=geo_df ['abs_areaDiff']/geo_df['statedArea']
geo_df ['perc_areaDiff']=geo_df['frac_areaDiff']*100

geo_df ['perc_areaDiff'] .max ()

Out:0.10317568566038449

geo_df .query('perc_areaDiff>0.1"')

geo_df .query('perc_areaDiff>0.1').plot()
geo_df.query('perc_areaDiff>0.08') .plot ()
geo_df.query('perc_areaDiff>0.05') .plot ()

Western lllinois is the worst part of the projection

Working with Spatial Data
LGeopandas Basics
LPractice

Solution 2

polyl=ps.lib.cg.asShape(geo_df.geometry[0])
f=lambda poly2: ps.lib.cg.get_shared_segments(polyl,ps.lib.cg.asShape(poly2))
geo_df ['sharedSegments']=geo_df.geometry.map (f)

def listFilter(x):
if x==[]:
return False
else:
return True

geo_df [geo_df ['sharedSegments'] .map(listFilter)]

Working with Spatial Data
L GeoPandas for Combined Spatial and Numerical Analysis
L'I'heory

Extending a GeoDataFrame

m Joining the PySAL DataFrame to the csv data was obvious with
pd.merge

m However, merge with the spatial frame in the right position returns
a DataFrame which would mean giving up our spatial indexing,
CRS, and plotting!

m GeoPandas has its own implementations of many standard pandas
analysis functions that accept the same options

m Let’s start from the reduced DataFrame that was computed earlier
using the PUMS weights

housingdf ['weightedNP']=housingdf ['WGTP']*housingdf ['NP']

g = housingdf.groupby(['PUMA'])

pumaAvgNPArray=g['weightedNP'].sum() / g['WGTP'].sum()
avgNPdf=pd.DataFrame (pumaAvgNPArray, columns=['avgNP']).reset_index()

Working with Spatial Data
L GeoPandas for Combined Spatial and Numerical Analysis
L'I'heory

Extending a GeoDataFrame

m AvgNPdf has the same number of records as our geo_df table
because we have made use of groupby

m Join is 1-1 and can be done as an INNER JOIN
m The merge function returns a GeoDataFrame

fulldf=geo_df .merge (avgNPdf ,how="'inner',left_on=['PUMACE10'] ,right_on=['PUMA'])

type (fulldf)
Out: geopandas.geodataframe.GeoDataFrame
fulldf.head()
PUMACE10 GEOID10 NAMELSAD10 MTFCC10 FUNCSTAT10 ALAND10 AWATER10 INTPTLAT10 INTPTLON10 geometry PUMA avgNP
Cook County
(South POLYGON
03411 1703411 Central)-- G6120 s 94129155 1576803 +41.7313634 -087.7167725 ((350904.9028309903 03411 2278784
Worth & 562835.2311880648, ...
Calumet T...
(,\“’Z :,‘:fe::{‘)“' POLYGON
03107 1703107 Er G6120 S 243596923 478565 +41.5528956 -087.9168232 ((339419.9439735664 03107 2.698186
rankfort, 543066.0907343754,
Homer & Ne... 3 "
Sl & POLYGON
03700 1703700 c y G6120 S 1912412009 37262592 +41.4200983 -088.4339373 ((305427.9081081446 03700 2.696594
ounties
PUMA 561510.3646416094, ...
McLean POLYGON
02000 1702000 G6120 S 3064559693 7853695 +40.4945594 -088.8445391 ((249670.2754834539 02000 2.203863

County PUMA 453821.0664099103, ...

Working with Spatial Data

L GeoPandas for Combined Spatial and Numerical Analysis

L'I'heory

GeoDataFrame Queries

m Joined data can subsequently be filtered as usual
' '
fulldf.query('avgNP>2.9")
PUMACE10 GEOID10 NAMELSAD10 MTFCC10 FUNCSTAT10 ALAND10 AWATER10 INTPTLAT10 INTPTLON10 geometry PUMA avgNP
Will County
(Northwest)— LYGON
03106 1703106 DuPage & G6120 S 185174720 2902950 +41.6828015 -088.1450808 ((321438.3752390264 03106 2.965908
Wheatland 561908.3529506001...
To...
Chicago City OLYGON
03527 1703527 (Szlmw;s‘:; G6120 S 34025246 48984 +41.7862967 -087.7415184 ((351295.6188415109 03527 2.978911
age T ark, 570450.8131469378,...

Garfield ...

Working with Spatial Data

L GeoPandas for Combined Spatial and Numerical Analysis
LTheory

Choropleth Plotting

fulldf.plot(column="'avgNP')

600000

500000

400000

300000

200000

100000

200‘000 400'000

Working with Spatial Data

L GeoPandas for Combined Spatial and Numerical Analysis
LTheory

Choropleth Plotting

fig, ax = plt.subplots(1l, 1)
fulldf.plot(column='avgNP', ax=ax, legend=True)

600000 28

26
500000

24
400000

22
300000 20
200000 18
100000 16

14

200000 400000

Working with Spatial Data
L GeoPandas for Combined Spatial and Numerical Analysis
LTheory

Filtered Choropleth Plotting

fig, ax = plt.subplots(l, 1)
fulldf.query('avgNP>2.2') .plot(column='avgNP', ax=ax, legend=True)

29
600000
28
500000 27
> .
400000
25
300000 24
[2

200000 300000 400000

Working with Spatial Data
L GeoPandas for Combined Spatial and Numerical Analysis
L'I'heory

Spatial Index Based Filtering

m Sometimes, we want to analyze explicit spatial subsets
m We could define a mask and test for inclusion row by row

m It is much easier to use the spatial index that already exists

fig, ax = plt.subplots(l, 1)
fulldf.cx[250000:,450000:]

returns only records with some portion of the polygon east of 250000 and north of

450000 (in the projected coordinate system)

Working with Spatial Data

L GeoPandas for Combined Spatial and Numerical Analysis

LTheory

Spatial Index Based Filtering

m Plotting works the same way and allows us to focus our attention
on areas of interest

fig, ax = plt.subplots(l, 1)
fulldf.cx[250000:,450000:] .plot (column="'avgNP', ax=ax, legend=True)

650000

28
600000

26
550000 24
500000 22

20
450000

18
400000 16
350000 14

300000 400000

Working with Spatial Data
L GeoPandas for Combined Spatial and Numerical Analysis
LTheory

Spatial Index Based Filtering

m The result can be combined with relational / numerical filtering of
values to find records of interest

fig, ax = plt.subplots(l, 1)
filteredData=fulldf.cx[250000:,450000:] .query('avgNP>2.5")
filteredData.plot(column='avgNP', ax=ax, legend=True)

640000

29
620000
600000

28
580000 !
560000 27
540000
520000 26
500000

300000 350000 400000

Working with Spatial Data
L GeoPandas for Combined Spatial and Numerical Analysis
LPractice

Problems 1

Using the housingdf imported earlier, modify the code from the
“Extending a GeoDataFrame” slides to compute a new weighted
average data set for the column BDSP (bedrooms per housing unit
sampled)

Continue the analysis using the process outlined in this section.
First create a GeoDataFrame that includes both the PUMA shape
data and the PUMS csv data for housing in lllinois

Create a choropleth map of the data with a legend to better
understand the distribution of values and how hot spots cluster
spatially in lllinois

Working with Spatial Data
L GeoPandas for Combined Spatial and Numerical Analysis
LPractice

Problems 2

Explore plotting subsets that you query with an expression similar to
the one used above to examine large average NP values, but do this
for your average BDSP data

Use spatial indexing to zoom in on a relevant geographic region and
plot the result

Finally, apply a more stringent query filter to see the subset of
PUMAs in the high concentration region that have the most
dramatic numbers for average bedrooms per household

Working with Spatial Data

LSpatial Joins in GeoPandas using R-Tree Indexing

L'I'heory

Spatial Joins for linking geographies

It is normal to deal with multiple spatial feature sets in
geospatial analysis

Often, different data is attached to each feature and in order
to link data across scales or express connective relationships it
is necessary to perform spatial joins

Spatial Joins can be thought of as a way of forming a join
between two tables of discrete features while using complex
spatial relationships as the join criterion rather than using
matching keys

To understand this we will need a second data set that we can
join to the first

shp_path_t='t1_2018_17_tract.shp'
dft=gpd.read_file(shp_path_t)
dft=dft.to_crs({'init': 'epsg:26971'})

Working with Spatial Data

LSpatial Joins in GeoPandas using R-Tree Indexing
LTheory

Examining our two geographies

m If two feature sets were the same, comparing them would be uninteresting (or at
least very easy)

m It is important to make sure that both are using the same projection

dft.cx[300000:,600000:] .plot ()

640000

620000

600000

580000

300000 320000 340000 350000 380000 400000

fulldf.cx[300000:,600000:].plot ()

640000

620000

600000

580000

280000 300000 320000 340000 360000 380000 400000

Working with Spatial Data
LSpatial Joins in GeoPandas using R-Tree Indexing
L'I'heory

Adding some simple data to the tract level geography

m In the name of expedience, we will append some randomly
generated data to our tract GeoDataFrame

import numpy as np
dft['tract_score']=np.random.normal(1000,150,dft.shape[0])

dft.head()
TRACTCE GEOID NAME NAMELSAD MTFCC FUNCSTAT ALAND AWATER INTPTLAT INTPTLON geometry tract_score
Census POLYGON
011700 17091011700 117 Tract 117 G5020 S 2370100 102060 +41.1294653 -087.8735796 ((337416.9310474549 1253.039315
496233.9953135318,...
Census. POLYGON
011800 17091011800 118 Tract 118 G5020 S 1790218 55670 +41.1403452 -087.8760059 ((336873.9649618285 892.692410
497112.4753127118,...
Census POLYGON
400951 17119400951 4009.51 Tract G5020 S 5170038 169066 +38.7277628 -090.1002620 ((145283.7247863071 724.447989
4009.51 227488.7024631576,...
Census POLYGON
400952 17119400952 4009.52 Tract G5020 S 5751222 305905 +38.7301928 -090.0827510 ((146843.1383274837 1035.095988
4009.52 229402.0122085095,...
Cenes) POLYGON
950300 17189950300 9503 Tract 9503 G5020 S 30383680 349187 +38.3567671 -089.3783135 ((205526.7301528867 1107.998299

182696.9930974582, ...

Working with Spatial Data
LSpatial Joins in GeoPandas using R-Tree Indexing
L'I'heory

R-Tree Dependency

m In order for sjoin to work, GeoPandas requires an additional
library: rtree

m R-Tree is a wrapper for a c-type libspatialindex

m To go further with this example, we will need to compile that
and link it to our python distribution

m All of the options for accessing this take more time than we
have so the remainder of this talk will be a demonstration

m | will post instructions on how to follow up on this on your
own on ARC after the talk.

Working with Spatial Data
LSpatial Joins in GeoPandas using R-Tree Indexing
L'I'heory

Basic Join Syntax

m gpd.sjoin(df1l,df2,how=, op=)

m how is analogous to how for relational joins except that it also
specified which geometry column is retained

m Options: left (dfl geometry is kept and all records from df1), right
(df2 geometry is kept and all records from df2), inner (dfl geometry
is kept but only matching records from df1)

m on is implicit since there is only one GeoSeries per GeoDataFrame

m op determines the spatial rule for matching (explanation below for
the left and inner cases)

m Options: intersects (any overlap), contains (dfl object entirely
surrounds df2 object), within (dfl object is entirely surrounded by
df2 object)

Working with Spatial Data
LSpatial Joins in GeoPandas using R-Tree Indexing
L'I'heory

Basic Join Syntax

joined_data=gpd.sjoin(tractdf,pumsdf,how='left',op="'intersects')

Produces a spatially joined GeoDataFrame where the geometry column
retained is the tract level geometry and any records associated with
PUMAs that it intersects would be appended.

Working with Spatial Data
LSpatial Joins in GeoPandas using R-Tree Indexing
L'I'heory

Join Example: Multiple Matches

joined_data.shape[0]

Out:493

tractdf . shape[0]

Out:287
joined_data.query (' TRACTCE=="803500"")

TRACTCE NAMELSAD tract_scor avgNP

1 803500 Census Tract 8035 1158.954562 2.412800

2 803500 Census Tract 8035 1158.954562 2.327185

This result (the joined_data table) has the same number of tracts
included as the original filtered tract data, 286.

Working with Spatial Data
LSpatial Joins in GeoPandas using R-Tree Indexing
LTheory

Join Example: Grouped Data

def f(x):
a=x['avgNP'] .max ()
y=x.query ('avgNP=="+str(a))
return y

result=joined_data.groupby(['TRACTCE']) .apply (f)
fig, ax = plt.subplots(l, 1)
result.plot(column='avgNP', ax=ax, legend=True)

640000

620000

600000

580000

300000 320000 340000 360000 380000 400000

Working with Spatial Data

LSpatial Joins in GeoPandas using R-Tree Indexing

LTheory

Join Example: Appended Columns

fig, ax = plt.subplots(l, 1)
result.plot(column="'tract_scor', ax=ax, legend=True)

1400
640000

1200
620000

1000

600000

580000 800

300000 320000 340000 360000 380000 400000 600

Working with Spatial Data

LSpatial Joins in GeoPandas using R-Tree Indexing

LTheory

Join Example: Filtering on Joined Data

fig, ax = plt.subplots(l, 1)
filt_result=result.query('avgNP>2.6&tract_scor>1000')
filt_result.plot(column='tract_scor', ax=ax, legend=True)

1300
640000
1250

630000 1200

620000 nso

1100
610000

1050

600000

300000 310000 320000 330000

Working with Spatial Data
LBibliography

[1]

2]
8]
[4]

Paul Bolstad. GIS Fundamentals. University of Minnesota,
2012.

Noel A. C. Cressie. Statistics for Spatial Data. Wiley, 2015.
Wes McKinney. Python for Data Analysis. O’Reilly, 2013.

Hanan Samet. Foundations of Multidimensional and Metric
Data Structures. Morgan Kaufmann, 2006.

	Downloading Data, Accessing ARC, and Example Problem
	Pandas Preliminaries
	Theory
	Practice

	Minimalistic Spatial Data Handling with PySAL and Pandas
	Theory
	Practice

	Geopandas Basics
	Theory
	Practice

	GeoPandas for Combined Spatial and Numerical Analysis
	Theory
	Practice

	Spatial Joins in GeoPandas using R-Tree Indexing
	Theory

	Bibliography
	References

