
Python Libraries for Researchers

Python Libraries for Researchers
Research Computing Summer School 2019

Ian Percel

University of Calgary, Research Computing Services

May 28, 2019

Python Libraries for Researchers

Who is here?

Who has programmed in Python before?

Who has used NumPy before?

Who is familiar with Linear Algebra?

Who has used Pandas before?

Who is familiar with Databases and Relational Algebra?

Python Libraries for Researchers

What is this talk about?

Data structures are infrastructure

ndarray and DataFrame are complex data structures

The ability to blend linear algebra and relational algebra in a
single family of structures brings opportunities and risk

It is important to understand the philosophy of these
structures. Once we do, many of the more complex functions
become easy to understand.

Python Libraries for Researchers

Outline

1 Downloading Data, Accessing ARC, and Example Problem

2 NumPy Data Structures and Sample Data Generation
Theory
Practice

3 Fast Linear Algebra with NumPy
Theory
Practice

4 DataFrames and Basic Indexing
Theory
Practice

Python Libraries for Researchers

Outline

5 Boolean Indexes and query (SELECT...WHERE...)
Theory
Practice

6 concat and merge (UNION and JOIN)
Theory
Practice

7 apply and the Split-Apply-Combine framework
Theory
Practice

8 Bibliography

Python Libraries for Researchers

Downloading Data, Accessing ARC, and Example Problem

Downloading this presentation

https://westgrid.github.io/calgarySummerSchool2019/

4-materials.html

Right click on the Python Libraries for Reserchers:Presentation
link and Save As/download to your computer

https://westgrid.github.io/calgarySummerSchool2019/4-materials.html
https://westgrid.github.io/calgarySummerSchool2019/4-materials.html

Python Libraries for Researchers

Downloading Data, Accessing ARC, and Example Problem

Downloading Data

We will be working with US Census Data from the 5-year
American Community Survey

Specifically, we will be using the de-identified Public Use
Microdata Sample (PUMS) data from 2013

Point your browser at
https://www2.census.gov/acs2013_5yr/pums/ to see the
relevant FTP directory

Download csv_hil.zip to your personal computer (by right
clicking and choosing Save As)

https://www2.census.gov/acs2013_5yr/pums/
csv_hil.zip

Python Libraries for Researchers

Downloading Data, Accessing ARC, and Example Problem

Cluster Architecture: where we will be working

Python Libraries for Researchers

Downloading Data, Accessing ARC, and Example Problem

Transferring Data to ARC on a Mac

We will transfer the data set to your account using the rsync utility

On a Mac: open Terminal

From your Terminal run the following command

rsync -avv path/to/file/csv_hil.zip userName@arc.ucalgary.ca:"~"

path/to/file is the full path to the downloaded file

on a mac desktop this would be ∼/Desktop/

userName is your itUserName or guestUserName

you will be prompted for a password, enter your ucalgary email
password or the guest password that you have been given.

If this is your first session signing in, you will be asked to confirm
the certificate. Type yes and press enter.

Once the transfer completes, enter the command: ssh

userName@arc.ucalgary.ca and enter your password again

An ASCII Art “ARC” welcome message should appear.

type unzip csv hil.zip and press enter

Python Libraries for Researchers

Downloading Data, Accessing ARC, and Example Problem

Transferring Data to ARC on a Windows PC

On a Windows PC: open MobaXterm

To connect an SSH session, the remote host=arc.ucalgary.ca, user
name= your IT user Name or guest username

You will be prompted for a password and will need to enter either
your ucalgary email password or the guest password that you have
been given

If this is your first session signing in, you will be asked to confirm
the certificate. Type yes and press enter

An ASCII Art “ARC” welcome message should appear in the
terminal.

When the SSH Session connects an FTP window will appear on the
left hand side. This can be used to upload the zip file graphically.

Once the file has been uploaded, return to the prompt in your Moba
terminal, type unzip csv hil.zip and press enter

Python Libraries for Researchers

Downloading Data, Accessing ARC, and Example Problem

Jupyter Notebooks on ARC

Why use Notebooks when custom installed environments are
cleaner, faster, and more reliable? They’re Prettier!

https://jupyter.ucalgary.ca:8000/hub/login

Use your itusername and email password to login

Upload any data files that you need to use with the upload
button

Create a new notebook using New > Notebook: Python 3

https://jupyter.ucalgary.ca:8000/hub/login

Python Libraries for Researchers

Downloading Data, Accessing ARC, and Example Problem

Jupyter Notebooks on ARC

Rename notebook by double-clicking on the work Untitled and
changing it in the provided field and clicking the rename
button at the bottom right of the dialogue

To run python code, enter it in the text box / cell and press
the run button (pressing enter will just create a newline) try
out 3+5

The result will be printed below the cell

A new cell will be automatically be created below the cell that
was just run

Python Libraries for Researchers

Downloading Data, Accessing ARC, and Example Problem

Where we are going

PUMS Data:

import pandas as pd

import numpy as np

from pandas import DataFrame,Series

basedf=pd.read_csv('ss13hil.csv')

#what are the columns?

print(list(basedf.columns))

['insp', 'RT', 'SERIALNO', 'DIVISION', 'PUMA00', 'PUMA10', 'REGION', 'ST', 'ADJHSG', 'ADJINC', 'WGTP',

'NP', 'TYPE', 'ACR', 'AGS', 'BATH', 'BDSP', 'BLD', 'BUS', 'CONP', 'ELEP', 'FS', 'FULP', 'GASP', 'HFL',

'MHP', 'MRGI', 'MRGP', 'MRGT', 'MRGX', 'REFR', 'RMSP', 'RNTM', 'RNTP', 'RWAT', 'RWATPR', 'SINK', 'SMP',

'STOV', 'TEL', 'TEN', 'TOIL', 'VACS', 'VALP', 'VEH', 'WATP', 'YBL', 'FES', 'FINCP', 'FPARC', 'GRNTP',

'HHL', 'HHT', 'HINCP', 'HUGCL', 'HUPAC', 'HUPAOC', 'HUPARC', 'KIT', 'LNGI', 'MULTG', 'MV', 'NOC', ...]

#plus 50 more real columns and 80 replication weights

#How many rows?

basedf.shape[0]

Out: 287799

Working in a graphical tool like Excel is out of the question. For more information:

https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/

PUMS_Data_Dictionary_2009-2013.pdf?#

https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2009-2013.pdf?#
https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2009-2013.pdf?#

Python Libraries for Researchers

Downloading Data, Accessing ARC, and Example Problem

Where we are going

How correlated is number of bedrooms (BDSP), the total number
of rooms (RMSP) and number of persons listed (NP) by PUMA?
We need to incorporate replication weights into our regression and
repeat it for every PUMA. How do we do this in any reasonable
amount of time?

basedf=pd.read_csv('ss13hil.csv', index_col='SERIALNO',

usecols=['SERIALNO', 'PUMA00','WGTP', 'NP', 'BDSP', 'RMSP'],)

def f(base):

subset=base.query('PUMA00==3515').dropna()

W=np.diag(subset.query('PUMA00==3515')[['WGTP']].values.astype(np.float32).flatten())

y=subset.query('PUMA00==3515')[['NP']].values.astype(np.float32).flatten()

X=subset.query('PUMA00==3515')[['BDSP','RMSP']].values.astype(np.float32)

XT=np.dot(W,X).T

beta=np.dot(np.dot(np.linalg.inv(np.dot(XT,X)),XT),y)

return beta

f(basedf)

[0.59527564, 0.06117937]

In 3515, 60% of the variation in NP can be explained by the variation in the number of bedrooms in the units
sampled in contrast to 6% due to the number of rooms in the units sampled. (to describe the error in this
statement we would need to look at the generalized uncertainty computed from all 80 of the replication weights)

By using the apply operator and eliminating the query clauses, this can be generalized to run separately on each

PUMA automatically and return a composite dataframe of the results.

Python Libraries for Researchers

NumPy Data Structures and Sample Data Generation

Theory

ndarrays as Matrices

NumPy can be thought of as a MATLAB like analysis tool

If you can frame your problem in terms of linear operators
(Matrix Algebra) then NumPy is your friend

Some limitations:

Single data-type per ndarray (all double precision floats [there
are many possible number types] or all strings or all Booleans)

Can be all Objects but this loses almost all of the power of
NumPy

Does not support query-like or JOIN-like operations that are
familiar from working with other tables

Python Libraries for Researchers

NumPy Data Structures and Sample Data Generation

Theory

What makes a good ndarray?

Images

Raster-type maps

Coefficient matrices for finite-difference schemes

Markov transition matrices

Wiener Filters

Quantized data for machine learning classification

word2vec pre-processed text data

Random vectors for use in Monte Carlo simulation

Python Libraries for Researchers

NumPy Data Structures and Sample Data Generation

Theory

Making a Simple ndarray

import numpy as np

z1=np.zeros(4)

z1.shape

Out: (4)

z1.ndim

Out: 1

z2=np.zeros(4,4)

z2.shape

Out: (4,4)

z2.ndim

Out: 2

Python Libraries for Researchers

NumPy Data Structures and Sample Data Generation

Theory

Making a Simple ndarray

a=np.eye(4)

a.dtype

Out: dtype('float64')

a=a.astype(np.bool)

a

Out: array([[True, False, False, False],

[False, True, False, False],

[False, False, True, False],

[False, False, False, True]])

a.dtype

Out: dtype('bool')

Python Libraries for Researchers

NumPy Data Structures and Sample Data Generation

Theory

Making an ndarray manually

a=np.array([[1,2,3],[4,5,6],[7,8,9]])

a.ndim

Out: 2

print(a)

Out:

[[1, 2, 3],

[4, 5, 6],

[7, 8, 9]]

a[1]=[4,5,7]

print(a)

Out:

[[1 2 3]

[4 5 7]

[7 8 9]]

a[1,2]=13

print(a)

Out:

[[1 2 3]

[4 5 13]

[7 8 9]]

b=np.array([1,2,3])

b.ndim

Out: 1

print(b)

Out: [1, 2, 3]

Python Libraries for Researchers

NumPy Data Structures and Sample Data Generation

Theory

Making an ndarray from randomly generated data

a=np.random.normal(0,25)

print(a)

Out: 15.936712317676044

type(a)

Out: float

b=np.random.normal(0,25,5)

print(b)

Out: [15.00295801 6.55752791 -21.31621132 17.15683612 -4.63542673]

type(b)

Out: <class 'numpy.ndarray'>

b.ndim

Out: 1

c=np.random.normal(0,25,(4,4))

print(c)

Out:

[[-53.66868452 11.20152646 10.40429457 -28.95341445]

[-12.87286226 15.06092279 -1.20924852 -5.00258415]

[-12.96715448 -4.11633735 -14.40398383 -8.23115077]

[18.12714852 -18.11285746 -17.72416603 -14.91216281]]

c.ndim

Out: 2

Python Libraries for Researchers

NumPy Data Structures and Sample Data Generation

Theory

Making an ndarray from a pandas DataFrame

import pandas as pd

import numpy as np

basedf=pd.read_csv('ss13hil.csv')

colList=[]

for n in range(1,81,1):

colList.append('WGTP'+str(n))

simpledf=basedf[colList]

testArray=simpledf.iloc[0:80].values

print(type(testArray))

Out: <class 'numpy.ndarray'>

print(testArray.dtype)

Out: int64

print(testArray.ndim)

Out: 2

Python Libraries for Researchers

NumPy Data Structures and Sample Data Generation

Practice

Problems 1

1 Generate a 100 x 100 identity matrix and set it to the variable
i

2 Swap the first and second rows (Hint: create two 1D arrays
from the first two vectors using v1=i[0].copy() and
v2=i[1].copy(), use these to change the values of the rows
of i) What will this new matrix do if you matrix multiply it
against a vector?

3 Use np.random.normal to generate a 500 row and 2 column
matrix of random samples from a normal distribution with
mean 1000 and standard deviation of 20

Python Libraries for Researchers

NumPy Data Structures and Sample Data Generation

Practice

Problems 2

1 Use np.random.poisson

(https://docs.scipy.org/doc/numpy/reference/
generated/numpy.random.poisson.html) to generate a
1000 random samples from a poisson distribution with an
expected interval of 10

2 Starting from basedf=pd.read csv(’ss13hil.csv’) use
the data dictionary to identify the column names associated
with the 2010 PUMA microdata area code, the housing
weight, the number of units in structure, the tenure, and the
vacancy status. Create a list of these codes as strings and
name it listCols. Set df=basedf[listCols].copy() and
then attempt to turn this into an ndarray. What is the
inferred datatype? What are the number of rows? what are
the number of columns?

https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.poisson.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.poisson.html

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Theory

Element-wise Operations

scalar multiplication (multiply every element by a number)

element-wise reciprocal (replace every element by its inverse)

element-wise exponentiation (raise every element to a power)

unary universal functions (np.log, np.exp, np.isnan)

binary universal functions (np.maximum, np.minimum)

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Theory

Element-wise Operations

x=np.array([[1,2],[3,4]])

x*5

Out:

array([[5, 10],

[15, 20]])

1/x

Out:

array([[1. , 0.5],

[0.33333333, 0.25]])

x**(0.5)

Out:

array([[1. , 1.41421356],

[1.73205081, 2.]])

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Theory

Element-wise Operations

np.log(x)

Out:

array([[0. , 0.69314718],

[1.09861229, 1.38629436]])

x=x.astype(np.float64)

x[0,0]=np.nan

np.isnan(x)

Out:

array([[True, False],

[False, False]])

y=np.array([[1.5,2.5],[0,0]])

np.maximum(x,y)

Out:

array([[nan, 2.5],

[3. , 4.]])

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Theory

Transposition

Transposition is a special kind of rearranging of elements
(reshaping in numpy terminology)

Rows are switched into Columns

This operation is essential to much of linear algebra

x=np.array([[1,2],[3,4]])

x.T

Out:

array([[1, 3],

[2, 4]])

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Theory

Matrix Addition and Other Binary Element-wise Operations

Matrices of the same size can be combined through element-wise
arithmetic (binary ufuncs)

Addition and subtraction are the same as in usual matrix algebra

x=np.array([[1,2],[3,4]])

y=x*3

x+y

Out:

array([[4, 8],

[12, 16]])

x-y

Out:

array([[-2, -4],

[-6, -8]])

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Theory

Matrix Addition and Other Binary Element-wise Operations

Multiplication and division operate element-wise and so are not the
same as matrix multiplication and factorization

x=np.array([[1,2],[3,4]])

y=x*3

x*y

Out:

array([[3, 12],

[27, 48]])

x/y

Out:

array([[0.33333333, 0.33333333],

[0.33333333, 0.33333333]])

y/x

Out:

array([[3., 3.],

[3., 3.]])

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Theory

Matrix Multiplication and Matrix Inversion

To access the traditional matrix product in numpy, use the
np.dot() function

This multiplies rows of the first matrix by columns of the
second

This only works if the row length of the first matrix agrees
with the column length of the second

x=np.array([[1,2],[3,4]])

y=np.array([[0,1],[1,0]])

np.dot(x,y)

Out:

array([[2, 1],

[4, 3]])

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Theory

Matrix Multiplication and Matrix Inversion

np.linalg package contains the function inv, which
numerically computes the matrix inverse of a square matrix

x=np.array([[1,2],[3,4]])

x_inv=np.linalg.inv(x)

np.dot(x,x_inv)

Out:

array([[1.0000000e+00, 0.0000000e+00],

[8.8817842e-16, 1.0000000e+00]])

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Theory

Matrix Multiplication and Matrix Inversion

When applied to transposed 1D arrays it also can be used to
calculate the inner product

x=np.array([[1,2],[3,4]])

y=np.array([0,1])

np.dot(y,x)

Out:

array([3, 4])

z=np.array([0,1]).T

np.dot(y,z)

Out:1

z2=np.array([1,0]).T

np.dot(y,z)

Out:0

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Theory

Advanced Linear Algebra

In addition to matrix inversion, np.linalg contains a wide
range of advanced functionality
np.linalg.trace computes the sum of diagonal elements
(equivalently eigenvalues)
np.linalg.det computes the determinant of a matrix
np.linalg.eig computes the eigenvectors and eigenvalues of
a square matrix
np.linalg.svd computes the singular value decomposition
of a matrix
np.linalg.solve computes the solution to a linear system
of equations
np.linal.lstsq computes the least squares solution to an
overdetermined linear system
np.linalg is so useful that if you are working with numpy at
any length it is probably worth importing in its own right

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Practice

Problems 1

1 Use np.random.normal to generate a 10 by 10 matrix and save it
to the variable x

2 The resulting matrix should have rank 10 with high probability.
Confirm that it does with np.linalg.matrix rank(x). If it has
Rank less than 10, re-generate the matrix until it does.

3 Compute the matrix inverse of your full rank matrix.

4 Take the matrix product of your random matrix with its inverse and
save that to a new variable id approx.

5 Create a new 10 by 10 identity matrix.

6 Subtract the new identity matrix from your id approx and save
that to a new variable called inv error. (this is the error matrix
relative to a perfect inversion)

Python Libraries for Researchers

Fast Linear Algebra with NumPy

Practice

Problems 2

1 Compute the 2-norm of the inv error matrix using
np.linalg.norm (see
https://docs.scipy.org/doc/numpy-1.12.0/

reference/generated/numpy.linalg.norm.html) The
result should be a very very small number

2 Repeat this process by using np.random.normal to generate
a matrix with twice as many rows as columns. Confirm that
its rank is equal to its number of columns.

3 For this matrix produce a pseudoinverse using
np.linalg.pinv and repeat the above analysis of how close
the left matrix product is to an identity matrix. What about
the right matrix product?

https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.linalg.norm.html
https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.linalg.norm.html

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

What is pandas?

Pandas provides a SQL-like approach (that blends in elements
of statistics and linear algebra) to analyzing tables of data

DataFrames in R are very similar

Differences from NumPy: Pandas allows multiple datatypes,
includes richer querying and merging of datasets

Pandas has been adopted as a de facto standard for input and
vectorization across numerous disciplines

Spatial Data Analysis, Machine Learning, Natural Language
Processing, Visualization and Mapping

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

DataFrames and their Constructors

Pandas include both Series and DataFrame.
We will exclusively focus on DataFrames.
Constructor and data load functions have three key options:

Column names and default column data types

Indexes or row names

NULL handling

import pandas as pd

from pandas import DataFrame

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

DataFrames and their Constructors (column-oriented)

dataDict={'ID':[1000,1212,1357,4908],

'province':['AB', 'AB', 'BC', 'BC'],

'income':[12000,43000,95000,79500]}

df=DataFrame(dataDict)

df.head()

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

DataFrames and their Constructors (column-oriented)

dataDict={'ID':[1000,1212,1357,4908],

'province':['AB', 'AB', 'BC', 'BC'],

'income':[12000,43000,95000,79500]}

df=DataFrame(dataDict, index=dataDict['ID'])

df.head()

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

DataFrames and their Constructors (column-oriented)

dataDict={'ID':[1000,1212,1357,4908],

'province':['AB', 'AB', 'BC', 'BC'],

'income':[12000,43000,95000,79500]}

df=DataFrame(dataDict,

index=dataDict['ID'],

columns=['province','income'])

df.head()

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

DataFrames and their Constructors (row-oriented)

r1={'ID':1000, 'province':'AB', 'income':12000}

r2={'ID':1212, 'province':'AB', 'income':43000}

r3={'ID':1357, 'province':'BC', 'income':95000}

r4={'ID':4908, 'province':'BC', 'income':79500}

dataList=[r1,r2,r3,r4]

index_temp=[]

for x in dataList:

index_temp.append(x['ID'])

df=DataFrame(dataList,

index=index_temp,

columns=['province','income'])

df.head()

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

Loading data from a csv file

basedf=pd.read_csv('ss13hil.csv')

basedf[['SERIALNO', 'PUMA00', 'PUMA10', 'ST', 'ADJHSG', 'ADJINC',

'WGTP', 'NP', 'TYPE', 'ACR', 'AGS', 'BATH', 'BDSP',

'BLD', 'BUS', 'CONP', 'ELEP', 'FS', 'FULP']].head()

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

Loading data from a csv file

basedf=pd.read_csv('ss13hil.csv', index_col='SERIALNO',

usecols=['SERIALNO', 'PUMA00', 'PUMA10', 'ST',

'ADJHSG', 'ADJINC', 'WGTP', 'NP', 'TYPE', 'ACR',

'AGS', 'BATH', 'BDSP', 'BLD', 'BUS', 'CONP', 'ELEP',

'FS', 'FULP'])

basedf.head()

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

Accessing Data from a DataFrame

basedf.loc[[2009000000061]]

SERIALNO PUMA00 PUMA10 ST ADJHSG ADJINC WGTP NP...

2009000000061 3515 -9 17 1086032 1085467 36 0 ...

basedf.loc[[2009000000061],'NP']=1

basedf.loc[[2009000000061]]

SERIALNO PUMA00 PUMA10 ST ADJHSG ADJINC WGTP NP...

2009000000061 3515 -9 17 1086032 1085467 36 1 ...

basedf.loc[[2009000000061,2009000000075]]

will capture 2 rows

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

Accessing Data from a DataFrame

basedf['newField']=22

basedf[['newField']].head()

Python Libraries for Researchers

DataFrames and Basic Indexing

Theory

Accessing Data from a DataFrame

basedf.iloc[:5]

Python Libraries for Researchers

DataFrames and Basic Indexing

Practice

Problems 1

1 Load the ss13hil.csv file to a DataFrame including only the
columns: ’SERIALNO’, ’PUMA00’, ’PUMA10’, ’HUPARC’,
’KIT’, ’LNGI’, ’MULTG’, ’MV’, ’NOC’, ’NPF’, ’NPP’, ’NR’,
’NRC’, ’OCPIP’, ’WGTP’ and force SERIALNO to be the
index

2 Look up the 10th through 12th rows of the DataFrame (by
index location)

3 Use the SERIALNO values obtained for the 10th through 12th
rows and construct a filter by index value that returns the
same rows

4 Select these rows again with only the columns ’HUPARC’,
’KIT’, ’LNGI’, ’MULTG’, ’MV’

Python Libraries for Researchers

DataFrames and Basic Indexing

Practice

Problems 2

1 Starting from the filtered DataFrame that you created above, assign
this a new variable (say dataview1)

2 Take the same filtered DataFrame and assign it to a second variable
(say df2) and this time use the .copy() command (usage:
df2=df1.loc[[something],[some cols]].copy())

3 Inspect your two “new” dataframes and confirm that they are the
same as your original filtered data

4 We will now explore how they are different. Change a value in the
basedf for one of your filtered columns and rows. Now examine your
two derived DataFrames to see if your change propagated.

5 Conversely, make a different change to each of the two derived
DataFrames and check the original to see if it propagated back.

This is the difference between deep and shallow copies. Shallow copies are made by reference only and so changes
propagate while deepcopies are completely independent objects. The upside of deepcopies is that they have no
entanglements or side effects related to other objects. They only change when you change them. The downside is
that they require a separate memory allocation so they quickly become prohibitive when you are working with very
large data sets.

Python Libraries for Researchers

Boolean Indexes and query (SELECT...WHERE...)

Theory

Querying DataFrames

The methods for data access that we have described so far
don’t lend themselves to searching for rows based on
meaningful data

In this section, we will describe complex methods for selecting
subsets of a DataFrame

We will focus on two methods: (1) query (2) Boolean
Indexing

The two methods are essentially equivalent in simple cases but
Boolean Indexing can be much more general

Python Libraries for Researchers

Boolean Indexes and query (SELECT...WHERE...)

Theory

query

query takes a text string argument in the form (roughly) of a SQL
WHERE clause

Column names need to be referenced without quoting so suitable
single-word names are needed

https://pandas.pydata.org/pandas-docs/version/0.22/

indexing.html#indexing-query

basedf.query('PUMA00==3515')

https://pandas.pydata.org/pandas-docs/version/0.22/indexing.html#indexing-query
https://pandas.pydata.org/pandas-docs/version/0.22/indexing.html#indexing-query

Python Libraries for Researchers

Boolean Indexes and query (SELECT...WHERE...)

Theory

query

The query functionality can work between fields.

However, the only operators that I would rely on are (==, !=, <,

>, <=, >=, &, |)

query() is by default evaluated using the numexpr engine, which
outperforms pure python on DataFrames of more than 200,000 rows

basedf.query('BDSP==NP')

Python Libraries for Researchers

Boolean Indexes and query (SELECT...WHERE...)

Theory

query

Arithmetic is possible although I can’t speak to its efficiency

The use of in and not in operators as well as ==[’a’,’b’,...],
although parts of this will generally be evaluated using pure python

basedf.query('0<BDSP<NP & PUMA00==3515')

Python Libraries for Researchers

Boolean Indexes and query (SELECT...WHERE...)

Theory

Boolean Indexing

Boolean Indexing takes advantage of the fact the any Series derived
from a dataframe keeps the same index as the dataframe

It amounts to creating a mask that only lets certain values slip
through while blocking others

mask=(basedf['PUMA00']==3515)

mask[0:5]

Out:

SERIALNO

2009000000061 True

2009000000075 False

2009000000108 False

2009000000132 False

2009000000150 False

Name: PUMA00, dtype: bool

Python Libraries for Researchers

Boolean Indexes and query (SELECT...WHERE...)

Theory

Boolean Indexing

The mask itself can be created separately and then applied

mask=(basedf['PUMA00']==3515)

basedf[mask].head()

Python Libraries for Researchers

Boolean Indexes and query (SELECT...WHERE...)

Theory

Boolean Indexing

The filtering logic and functions used to create the mask itself can
be as complex as you like

Anything you can write in Python can be implemented to create a
mask as long as you keep the same index intact

def filt(x):

if x==1:

return True

if x==2:

return False

if x>2:

return True

mask=(basedf['PUMA00']==3515)&(basedf['BDSP'].map(filt))

basedf[mask].head()

Python Libraries for Researchers

Boolean Indexes and query (SELECT...WHERE...)

Practice

Problems 1

1 Start from an import of the PUMS csv using the columns
’SERIALNO’, ’PUMA00’, ’BDSP’, and ’NP’ (as usual with
SERIALNO as the index). load this to a variable named basedf

2 Use the command
basedf[[’PUMA00’]].drop duplicates() to produce a list
of the unique PUMA regions from 2000.

3 Using the query command, select only those rows where the
PUMA region number matches one specific one that you
chose to work with from the previous step. How many records
are returned? (look below the readout of sample rows to see a
number) Repeat this for 4 different PUMAs and compare the
counts returned for each. (what is the total?)

Python Libraries for Researchers

Boolean Indexes and query (SELECT...WHERE...)

Practice

Problems 2

1 Write a query using the OR operator | that includes the records for
all 4 of the PUMA regions that you examined above. Check that
the count of rows agrees with the total you just obtained.

2 Extend your query using additional parentheses and the AND
operator & (or and if you prefer) to select off those housing records
that are in one of those 4 regions and have more than 4 people
living in the residence.

3 Write a function that implements all of the PUMA logic and use the
.map(functionName) operation demonstrated above to produce a
Boolean Index mask for the PUMA

4 Write a second boolean index mask using the NP> 4 condition and
combine it with the mask you just created to produce a single mask
that does the work of your earlier query.

5 Apply the mask to get the corresponding rows and check by quick
inspection if it agrees with your earlier result (we will come back to
how you can check this more precisely in the next section)

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

Combining DataFrames

Just as linear algebraic operations are used to combine
ndarrays, relational operators are used to combine DataFrames

SQL operations like LEFT JOIN, INNER JOIN, UNION,
INTERSECT, SELECT DISTINCT, GROUP BY and APPLY
all have realizations as pandas operations

In this section we will discuss the JOIN and UNION operations

Pandas is meant to handle messy, inconsistent data and help
in making it consistent

Anywhere that a SQL operation would assume clean or unique
data, Pandas operations are a little more complex because
they are meant to allow for reality

General Reference: https://pandas.pydata.org/

pandas-docs/stable/user_guide/merging.html

https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

concat also known as UNION (and sometimes a cheap
JOIN)

concat provides a way to append data to the end of a
DataFrame or to append columns to existing rows

In its simplest form, it “adds rows” to the table, forcing
agreement between the columns (by column name) where
possible

concat becomes subtle when using the option axis=1

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

concat as UNION

concat accepts a list of DataFrames as its only required
argument
If the indexes are completely disjoint and the column names
are the same, that outcome is identical to that of UNION
from SQL

df1=DataFrame({'a':[1,2,3], 'b':[4,5,6]}, index=['x','y','z'])

df2=DataFrame({'a':[7,8,9], 'b':[10,11,12]}, index=['u','v','w'])

pd.concat([df1,df2])

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

concat as UNION for data with different columns

If the indexes are completely disjoint and the column names
are not the same, that outcome differs from that of UNION
from SQL in that it is still permitted but the non-matching
columns are all included and filled in with NULLS (or in
pandas language np.nan)

df1=DataFrame({'a':[1,2,3], 'b':[4,5,6]}, index=['x','y','z'])

df2=DataFrame({'a':[7,8,9], 'c':[10,11,12]}, index=['u','v','w'])

pd.concat([df1,df2])

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

concat as JOIN

If the indexes are overlapping and the column names are not
the same and axis=1 is used, that is identical to that of
INNER JOIN from SQL

df1=DataFrame({'a':[1,2,3], 'b':[4,5,6]}, index=['x','y','z'])

df2=DataFrame({'c':[7,8,9], 'd':[10,11,12]}, index=['x','y','z'])

pd.concat([df1,df2],axis=1)

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

concat as ???

For repeated indexes UNIONing on axis=0 or repeated
columns JOINing on axis=1, concat attempts to preserver
as much data as possible

The result can be a little bit bizzarre and getting back
something unambiguous may mean reindexing or renaming
columns

It is better to avoid this situation altogether if possible

df1=DataFrame({'a':[1,2,3], 'b':[4,5,6]}, index=['x','y','z'])

df2=DataFrame({'c':[7,8,9], 'd':[10,11,12]}, index=['x','y','z'])

pd.concat([df1,df2])

See Problem 1.

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

merge as JOIN

merge is a holistic JOIN operator

Like SQL JOINs, the options for using it are complex and take a great deal of
practice to master

We will focus on two options: on= and how=

on determines the common column used to join the two together (a list of
common columns can be specified

note that the indexes are not preserved. To keep them .reset index() before
joining and then set the index from that column after or join on index (not
covered here)

df1=DataFrame({'a':[1,2,3], 'b':[4,5,6]}, index=['x','y','z'])

df2=DataFrame({'a':[1,2,3], 'c':[10,11,12]}, index=['u','v','w'])

pd.merge(df1,df2,on='a')

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

merge as INNER JOIN

how can be set to left, right, inner, or outer

The left on and right on options specify the matching columns
on the left and right join tables if they have different names

Note that the default value of how is inner and this will filter out
non-matching rows symmetrically

df1=DataFrame({'a1':[1,2,3], 'b':[4,5,6]})

df2=DataFrame({'a2':[1,2,7], 'c':[10,11,12]})

pd.merge(df1,df2,how='inner',left_on='a1',right_on='a2')

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

merge as LEFT JOIN

By setting how to left the merge preserves columns in the first listed
DataFrame,

This leaves np.nan in the columns from the second table when no
matches are found

df1=DataFrame({'a1':[1,2,3], 'b':[4,5,6]})

df2=DataFrame({'a2':[1,2,7], 'c':[10,11,12]})

pd.merge(df1,df2,how='left',left_on='a1',right_on='a2')

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

merge as FULL OUTER JOIN

An outer join keeps non-matched rows from both tables, filling with
np.nan as needed

df1=DataFrame({'a1':[1,2,3], 'b':[4,5,6]})

df2=DataFrame({'a2':[1,2,7], 'c':[10,11,12]})

pd.merge(df1,df2,how='outer',left_on='a1',right_on='a2')

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Theory

merge as multi-key JOIN

By passing a list to each of the on options, the corresponding keys
are matched sequentially

In this case two rows are found to match if and only if the value of
a1 matches a2 and key1 matches key2

df1=DataFrame({'a1':[1,2,3],'key1':['R','R','C'] ,'b':[4,5,6]})

df2=DataFrame({'a2':[1,2,7],'key2':['R','D','C'], 'c':[10,11,12]})

pd.merge(df1,df2,how='outer',left_on=['a1','key1'],right_on=['a2','key2'])

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Practice

Problems 1

1 Return to the slide “concat as ???” and run the code in it.
Perform a similar experiment by altering the column names in df2 to
match those in df1 and run it again. Finally, change the axis of
concatenation to be axis=1 and run it a third time.

2 Describe for yourself how concat handles matching rows and
columns under different circumstances.

3 Start from an import of the PUMS csv using the columns
’SERIALNO’, ’PUMA00’,’WGTP’, ’WGTP1’, ’RMSP’, ’BDSP’, and
’NP’ (as usual with SERIALNO as the index). load this to a variable
named basedf

4 Make a list of 10 PUMA00 values

5 Create an empty DataFrame with the columns ’PUMA00’,’WGTP’,
’WGTP1’ with the statement
newdf=DataFrame(’PUMA00’:[],’WGTP’:[], ’WGTP1’:[])

Python Libraries for Researchers

concat and merge (UNION and JOIN)

Practice

Problems 2

1 Write a for loop that iterates over the list of PUMA00 values you just made and
for each value queries basedf for the matching PUMA00 records, copies the
resulting DataFrame and stores it to a temporary variable. Finally, the loop
should concat the DataFrame to you just made by querying and copying to
newdf.

2 When the loop finishes you will have assembled a DataFrame equivalent to
querying for records belonging to any of those 5 PUMA regions. This is
prototypical of assembling a dataframe through a sequence of complex
operations that you append on a single output table.

3 Test this by querying the full table for those 5 PUMA regions using the OR
operators and copying the result to a new temporary DataFrame then using
merge to perform and inner join between the two tables on SERIALNO (HINT
use reset index() on each first to make the old index a column in each table)

If the resulting table has the same number of rows as the original two tables (and they
have the same number of rows as themselves when deduplicating over SERIALNO)
then they have the same set of records

Python Libraries for Researchers

apply and the Split-Apply-Combine framework

Theory

Transforming Rows

map applies a function to the content of every entry in a
Series and can be used to systematically transform a single
column of a DataFrame

applymap works similarly but operates on every column of
every row of a DataFrame

apply is a profoundly general transformation function for
breaking a Dataframe into sub-DataFrames, transforming
each sub-DataFrame into new DataFrames, and finally
re-assembling them

Python Libraries for Researchers

apply and the Split-Apply-Combine framework

Theory

map for Transforming Columns

basedf['NP_sq']=basedf['NP'].map(lambda x: x**2)

basedf['PUMA00_str']=basedf['PUMA00'].map(lambda x: 'PUMA00:'+str(x))

Python Libraries for Researchers

apply and the Split-Apply-Combine framework

Theory

Split-Apply-Combine as an overall strategy

Similar to (but more general than) GROUP BY in SQL
General tool for bulk changes
The splitting step breaks data into groups using any column
(including the row number) [1]
This can be accomplished using df.groupby('year')

year author

2002 R Barga
1995 K Subieta
2002 D Lomet
1995 F Ferrandina,
1995 T Meyer

year author

2002 R Barga
2002 D Lomet

year author

1995 K Subieta
1995 F Ferrandina,
1995 T Meyer

Figure 3: Table Split/Fork

Python Libraries for Researchers

apply and the Split-Apply-Combine framework

Theory

Split-Apply-Combine in more detail

Groups produced by the split can be individually transformed by an
arbitrary function [1]

This is the essence of Apply (the DataFrame extension of Map)

The result is combined back into a single DataFrame

year author
2002 R Barga, D Lomet
1995 K Subieta, F Ferran-

dina,T Meyer

year author
2002 R Barga,

D Lomet

year author
2002 R Barga
2002 D Lomet

year author
1995 K Subieta
1995 F Ferrandina,
1995 T Meyer

year author
1995 K Subieta, F

Ferrandina,T
Meyer

Figure 4: Table Apply + Combine for concatenation

All of this is performed by a single Python interpreter on a single machine.

Python Libraries for Researchers

apply and the Split-Apply-Combine framework

Theory

apply in action

subdf=basedf.query('PUMA00==3515').copy()

def computeWeightedNP(x):

x['weightedNP']=x['NP']*x['WGTP']

return x

subdf=subdf.apply(computeWeightedNP, axis=1)

totals=subdf.sum()

totals['weightedNP']/totals['WGTP']

Out: 1.70737

Python Libraries for Researchers

apply and the Split-Apply-Combine framework

Theory

apply as CROSS APPLY

def computeWeightedNP(x):

x['weightedNP']=x['NP']*x['WGTP']

#print(x)

totals=x.sum()

x['avgNP']=totals['weightedNP']/totals['WGTP']

return x

subdf.groupby(['PUMA00']).apply(computeWeightedNP)

Python Libraries for Researchers

apply and the Split-Apply-Combine framework

Practice

Try out the column transformation examples from the “map
as Column Transformation” slide

Complete the example at the beginning of the presentation to
automatically compute weighted regressions by mixing NumPy
and Pandas and apply it for each PUMA

Python Libraries for Researchers

Bibliography

[1] Wes McKinney. Python for Data Analysis. O’Reilly, 2013.

	Downloading Data, Accessing ARC, and Example Problem
	NumPy Data Structures and Sample Data Generation
	Theory
	Practice

	Fast Linear Algebra with NumPy
	Theory
	Practice

	DataFrames and Basic Indexing
	Theory
	Practice

	Boolean Indexes and query (SELECT...WHERE...)
	Theory
	Practice

	concat and merge (UNION and JOIN)
	Theory
	Practice

	apply and the Split-Apply-Combine framework
	Theory
	Practice

	Bibliography
	References

