
Summer	School,	June	25-28,	2018

UofM-Summer-School,	June	25-28,	2018

Introduction	to	Parallel	Programming	
for	shared	memory	machines	using	

OpenMP

Ali	Kerrache

E-mail:	ali.kerrache@umanitoba.ca

Summer	School,	June	25-28,	2018

Outline
q Introduction to parallel programming (OpenMP)
q Definition of OpenMP API

Ø Constitution of an OpenMP program
Ø OpenMP programming Model
Ø OpenMP syntax [C/C++, Fortran]: compiler directives
Ø Run or submit an OpenMP job [SLURM, PBS]

q Learn OpenMP by Examples
Ø Hello World program

v Work sharing in OpenMP
ü Sections
ü Loops

Ø Compute pi = 3.14
v Serial and Parallel versions
v Race condition
v SPMD model
v Synchronization

Summer	School,	June	25-28,	2018

Download	the	support	material

q Download the files using wget:
wget https://ali-kerrache.000webhostapp.com/uofm/openmp.tar.gz
wget https://ali-kerrache.000webhostapp.com/uofm/openmp-slides.pdf

Or	from	the	website
https://westgrid.github.io/manitobaSummerSchool2018/

q Use ssh client: PuTTy, MobaXterm, Terminal (Mac or Linux) to
connect to cedar and/or graham:

Ø ssh –Y username@cedar.computecanada.ca
Ø ssh –Y username@graham.computecanada.ca

q Unpack the archive and change the directory:
tar	-xvf openmp.tar.gz
cd	UofM-Summer-School-OpenMP

Summer	School,	June	25-28,	2018

Concurrency	and	parallelism

Concurrency:

q Condition of a system in which
multiple tasks are logically active at
the same time … but they may not
necessarily run in parallel.

Parallelism:

- subset of concurrency
q Condition of a system in which

multiple tasks are active at the
same time and run in parallel.

What do we mean by parallel machines?

Summer	School,	June	25-28,	2018

Introduction	of	parallel	programming
Serial	Programming:
Ø Develop a serial program.
Ø Performance & Optimization?

Why	Parallel?
Ø Reduce the execution time.
Ø Run multiple programs.

What is Parallel Programming?
Obtain the same amount of
computation with multiple

cores at low frequency (fast).

Solution:
Ø Use Parallel Machines.
Ø Use Multi-Core Machines.

Time

1	Core

Parallelization
Execution	in	parallel

4	Cores

With	4	cores:
Execution	time	reduced	
by	a	factor	of	4

Example:

But	in	real	world:
Ø Run multiple programs.
Ø Large & complex problems.
Ø Time consuming.

Summer	School,	June	25-28,	2018

Parallel	machines	&	parallel	programming

Distributed Memory Machines Shared Memory Machines

CPU-3

MEM-3

CPU-2

MEM-2

CPU-1

MEM-1

CPU-0

MEM-0

CPU-3CPU-2CPU-1CPU-0

SHARED	MEMORY

Ø Each processor has its own memory.
Ø The variables are independent.
Ø Communication by passing messages
(network).

Ø All processors share the same memory.
Ø The variables can be shared or private.
Ø Communication via shared memory.

Ø Difficult to program.
Ø Scalable.

Ø Portable, easy to program and use.
Ø Not very scalable.

Multi-Processing Multi-Threading

MPI based programming OpenMP based programming

Summer	School,	June	25-28,	2018

Definition	of	OpenMP:	API
v Library used to divide computational work in a program and add parallelism

to a serial program (create threads).
v Supported by compilers: Intel (ifort, icc), GNU (gcc, gfortran, …).
v Programming languages: C/C++, Fortran.

v Compilers: http://www.openmp.org/resources/openmp-compilers/

OpenMP

Compiler Directives Runtime Library Environment Variables

Directives	to	add	to	a	
serial	program.

Interpreted	at	compile	
time.

Directives	executed	
at	run	time.	

Directives	introduced	after	
compile	time	to	control	&	
execute	OpenMP	program.

Summer	School,	June	25-28,	2018

Construction	of	an	OpenMP program

OpenMP

Compiler	Directives Runtime	Library Environment	
Variables

Application / Serial program / End user

Compilation / Runtime Library / Operating System

Thread creation & Parallel Execution

Thread	0 Thread	1 Thread	2 Thread	3 Thread	4 N-1

What is the OpenMP programming model?

…

Summer	School,	June	25-28,	2018

OpenMP model:	Fork-Join	parallelism

Serial Program

Define the regions to parallelize, then add OpenMP directives

FO
RK

JO
IN

FO
RK

JO
IN

FO
RK

JO
IN

Serial
Region

Serial
Region

Serial
Region

Nested
Region

Serial	region: master	thread
Parallel	region: all	threads

Master thread spawns a team of threads as needed.
The Parallelism is added incrementally: that is, the
sequential program evolves into a parallel program.

Summer	School,	June	25-28,	2018

Learn	OpenMP by	examples
v Example_00: Threads creation.

ü How to go from a serial code to a parallel code?
ü How to create threads?
ü Introduce some constructs of OpenMP.
ü Compile and run an OpenMP program
ü submit an OpenMP job

v Example_01: Work sharing using:
ü Loops
ü Sections

v Example_02: Common problem in OpenMP programming.
ü False sharing and race conditions.

v Example_03: Single Program Multiple Data model:
ü as solution to avoid race conditions.

v Example_04:
ü More OpenMP constructs.
ü Synchronization.

Summer	School,	June	25-28,	2018

OpenMP:	simple	syntax
Most of the constructs in OpenMP are compiler directives or pragma:

v For C/C++, the pragma take the form:

#pragma omp construct [clause [clause]…]

v For Fortran, the directives take one of the forms:

!$OMP construct [clause [clause]…]
C$OMP construct [clause [clause]…]
*$OMP construct [clause [clause]…]

ü For C/C++ include the Header file: #include <omp.h>
ü For Fortran 90 use the module: use omp_lib
ü For F77 include the Header file: include ‘omp_lib.h’

use omp_lib
!$omp parallel
Block of Fortran code
!$omp end parallel

#include <omp.h>
#pragma omp parallel
{
Block of a C/C++ code;
}

Summer	School,	June	25-28,	2018

Parallel	regions	and	structured	blocks
Most of OpenMP constructs apply to structured blocks

q Structured block: a block with one point of entry at the top and one point of
exit at the bottom.

q The only “branches” allowed are STOP statements in Fortran and exit() in
C/C++

#pragma omp parallel
{
int id = omp_get_thread_num();

more: res[id] = do_big_job (id);

if (conv (res[id]) goto more;
}
printf (“All done\n”);

Structured	block

if (go_now()) goto more;
#pragma omp parallel
{
int id = omp_get_thread_num();
more: res[id] = do_big_job(id);
if (conv (res[id]) goto done;
goto more;
}
done: if (!Really_done()) goto more;

Non	structured	block

Summer	School,	June	25-28,	2018

Compile	and	run	OpenMP program
q Compile and enable OpenMP library:

Ø GNU: add –fopenmp to C/C++ & Fortran compilers.
Ø Intel compilers: add –openmp, -qopenmp (accepts also –fopenmp)
ü PGI Linux compilers: add –mp
ü Windows: add /Qopenmp

q Set the environment variable: OMP_NUM_THREADS
ü OpenMP will spawns one thread per hardware thread.
Ø $ export OMP_NUM_THREADS=value (bash shell)
Ø $ setenv OMP_NUM_THREADS value (tcsh shell)

value: number of threads [For example 4]

q Execute or run the program:
Ø $./exec_program {options, parameters} or ./a.out

Summer	School,	June	25-28,	2018

Submission	script:	SLURM
#!/bin/bash
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=4
#SBATCH --mem-per-cpu=2500M
#SBATCH --time=0-00:30

Load compiler module and/or your
application module.

cd $SLURM_SUBMIT_DIR
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

echo "Starting run at: `date`"

./your_openmp_program_exec {options and/or parameters}

echo "Program finished with exit code $? at: `date`"

Resources:
q nodes=1
q ntasks=1
q cpus-per-task=1 to number of cores

per node

Ø Cedar: nodes with 32 or 48 cores
Ø Graham: nodes with 32 cores
Ø Niagara: nodes with 40 cores

Summer	School,	June	25-28,	2018

Submission	script:	PBS

#!/bin/bash
#PBS -S /bin/bash
#PBS –l nodes=1:ppn=4
#PBS –l pmem=2000mb
#PBS –l walltime=24:00:00
#PBS –M <your-valid-email>
#PBS –m abe

Load compiler module
and/or your application
module.

cd $PBS_O_WORKDIR
echo "Current working directory is `pwd`"
export OMP_NUM_THREADS=$PBS_NUM_PPN
./your_openmp_exec < input_file > output_file
echo "Program finished at: `date`"

On systems where $PBS_NUM_PPN is not
available, one could use:
CORES=`/bin/awk 'END {print NR}'
$PBS_NODEFILE`

export OMP_NUM_THREADS=$CORES

Resources:
ü nodes=1
ü ppn=1 to maximum of N CPU (hardware)
ü nodes=1:ppn=4 (for example).

Summer	School,	June	25-28,	2018

Data	environment

C/C++: default (shared | none)
Fortran: default (private | firstprivate | shared | none)

Ø only a single instance of variables in shared memory.
Ø all threads have read and write access to these variables.shared

Ø Each thread allocates its own private copy of the data.
Ø These local copies only exist in parallel region.
Ø Undefined when entering or exiting the parallel region.

private

Ø variables are also declared to be private.
Ø additionally, get initialized with value of original variable.

firstprivate

Ø declares variables as private.
Ø variables get value from the last iteration of the loop.

lastprivate

It is highly recommended to use: default (none)

Summer	School,	June	25-28,	2018

Hello	World!	program:	serial	version

#include <stdio.h>
int main() {

printf("Hello World\n");
}

C/C++ program
program Hello

implicit none
write(*,*) "Hello World"

end program Hello

Fortran 90 program

vObjective: simple serial program in C/C++ and Fortran
v Directory: Example_00 {hello_c_seq.c; hello_f90_seq.f90}

vTo do: compile and run the serial program (C/C++ or Fortran).
q C/C++:

Ø icc [CFLAGS] hello_c_seq.c –o exec_prog.x
Ø gcc [CFLAGS] hello_c_seq.c –o exec_prog.x

q Fortran:
Ø ifort [FFLAGS] hello_f90_seq.f90 –o exec_prog.x
Ø gfortran [FFLAGS] hello_f90_seq.f90 –o exec_prog.x

q Run the program: ./a.out or ./exec_prog.x

Summer	School,	June	25-28,	2018

Hello	World!	program:	parallel	version

#include <omp.h>
#pragma omp parallel
{
Structured bloc or blocs;
}

For C/C++ program
use omp_lib
!$omp parallel
Structured bloc
Structured bloc
!$omp end parallel

For Fortran 90 program

vObjective: create a parallel region and spawn threads.
v Directory: Example_00
v Templates: hello_c_omp-template.c; hello_f90_omp-template.f90

vTo do:
Ø Edit the program template and add OpenMP directives:

ü compiler directives.
Ø Compile and run the program of your choice (C/C++, Fortran).

ü Set the number of threads to 4 and run the program.
ü Run the same program using 2 and 3 threads.

Summer	School,	June	25-28,	2018

Hello	World!

v C and C++ use exactly the same constructs.
v Slight differences between C/C++ and Fortran.

#include <omp.h>
#include <stdio.h>
int main() {
#pragma omp parallel

{
printf("Hello World\n");
}

}

C/C++
program Hello

use omp_lib
implicit none

!$omp parallel
write(*,*) "Hello World"

!$omp end parallel

end program Hello

Fortran 90

Header module

Compiler
directivesCompiler

directives

Runtime Library
Thread rank:

Number of threads:
Set number of threads:

Compute time:

Ø omp_get_thread_num();
Ø omp_get_num_threads();
Ø omp_set_num_threads() ;
Ø omp_get_wtime() ;

Next example: helloworld_*_template.*

Summer	School,	June	25-28,	2018

Overview	of	the	program	Hello	World!
#include	<omp.h>								
#define	NUM_THREADS	4
int main()	{		
int ID,	nthr,	nthreads;		double	start_time,	elapsed_time;	
omp_set_num_threads(NUM_THREADS);		
nthr =	omp_get_num_threads();
start_time =	omp_get_wtime();		
#pragma omp parallel	default(none)	private(ID)	shared(nthreads) {		
ID	=	omp_get_thread_num();	nthreads =	omp_get_num_threads();					
printf("Hello	World!;	My	ID	is	equal	to	[%d]	– The	total	of	threads	is:	[%d]\n",
ID,		nthreads);		 }	

elapsed_time =	omp_get_wtime() - start_time;		
printf("\nThe time	spend	in	the	parallel	region	is:	%f\n\n",	elapsed_time);		
nthr =	omp_get_num_threads();		
printf(“Number	of	threads	is:	%d\n\n",nthr);

}

Development: set	number	of	threads.
Production: use	OMP_NUM_THREADS	

Set	OMP_NUM_THREADS
Get	number	of	threads	(Nth	=	1)	

Get	OMP_NUM_THREADS
Print	number	of	threads	(Nth	=	1)	

Compute	elapsed	time.

Summer	School,	June	25-28,	2018

Execution	of	the	program	Hello	World!

$ icc –openmp helloworld_c_omp.c
$ gcc –fopenmp helloworld_c_omp.c

Compile
$ ifort –openmp helloworld_f90_omp.f90
$ gfortran –fopenmp helloworld_f90_omp.f90

Compile

$ export OMP_NUM_THREADS=4
$./a.out
Hello	World!;	My	ID	is	equal	to	[0] - The	total	of	threads	is:	[4]
Hello	World!;	My	ID	is	equal	to	[3] - The	total	of	threads	is:	[4]
Hello	World!;	My	ID	is	equal	to	[1] - The	total	of	threads	is:	[4]
Hello	World!;	My	ID	is	equal	to	[2] - The	total	of	threads	is:	[4]
$./a.out
Hello	World!;	My	ID	is	equal	to	[3] - The	total	of	threads	is:	[4]
Hello	World!;	My	ID	is	equal	to	[0] - The	total	of	threads	is:	[4]
Hello	World!;	My	ID	is	equal	to	[2] - The	total	of	threads	is:	[4]
Hello	World!;	My	ID	is	equal	to	[1] - The	total	of	threads	is:	[4]

Execute the program

Run the program for OMP_NUM_THREADS between 1 to 4

$ export OMP_NUM_THREADS=1
$./a.out
$ export OMP_NUM_THREADS=2
$./a.out
$ export OMP_NUM_THREADS=3
$./a.out
$ export OMP_NUM_THREADS=4
$./a.out

Summer	School,	June	25-28,	2018

Work	sharing:	loops	in	OpenMP

OpenMP directives for loops:

q C/C++
Ø#pragma omp parallel for { ... }
Ø#pragma omp for { … }

q Fortran
!$OMP PARALLEL DO
...
!$OMP END PARALLEL DO

!$OMP DO
…
!OMP END DO

#pragma omp parallel
{

#pragma omp for
{
calc();
}

}
#pragma omp parallel for { calc(); }

C/C++

!$omp parallel
!$omp do
!$omp end do
!$omp end parallel
!$omp parallel do
!$omp end parallel do

Fortran

Summer	School,	June	25-28,	2018

Work	sharing:	loops	in	OpenMP

#pragma omp parallel
{
#pragma omp for

for (i = 0; i < nloops; i++)
do_some_computation();

}

C/C++
!$omp parallel
!$omp do

do i = 1, nloops
do_some_computation

end do
!$omp end do
!$omp end parallel

Fortran

Fork for or do loops Join

#pragma omp parallel for { …. } !$omp parallel do
!$omp end parallel do

Summer	School,	June	25-28,	2018

Loops	in	OpenMP:	Hello	World!

#include <omp.h>
#define nloops 8
int main()
{
int ID, nthreads;
#pragma omp parallel default(none) private(ID) shared(nthreads) {

ID = omp_get_thread_num();
if (ID == 0) { nthreads = omp_get_num_threads(); }
int i;
#pragma omp for
for (i = 0; i < nloops; i++) {

printf("Hello World!;
My ID is equal to [%d of %d] –
I get the value [%d]\n",ID,nthreads,i); }

}
}

C/C++

#pragma omp single
nthreads = omp_get_num_threads();

helloworld_loop_c_omp.cpp

File: Example_01/

Summer	School,	June	25-28,	2018

Directives	on	multiple	lines

#pragma omp parallel list-of-some-directives \
list-of-other-directives \
list-of some-other-directives

{
structured block of C/C++ code;
}

C/C++

!$omp parallel list-of-some-directives &
!$omp list-of-other-directives &
!$omp list-of some-other-directives
structured block of Fortran code
!$omp end parallel

Fortran

The list of directives
continues on the next lines

The list of directives
continues on the next lines

Summer	School,	June	25-28,	2018

Loops	in	OpenMP:	Hello	World!

use omp_lib
implicit none
integer :: ID, nthreads, i
integer, parameter :: nloops = 8

!$omp parallel default(none) shared (nthreads) private(ID)
ID = omp_get_thread_num()
if (ID ==0) nthreads = omp_get_num_threads()

!$omp do
do i = 0, nloops - 1

write(*,fmt="(a,I2,a,I2,a,I2,a)") "Hello World!, My ID is equal to &
& [", ID, " of ",nthreads, "] - I get the value [",i, "]"

end do
!$omp end do
!$omp end paralle

Fortran

helloworld_loop_f90_omp.f90

File: Example_01/

!$omp single
nthreads = omp_get_num_threads()

!$omp end single

Summer	School,	June	25-28,	2018

Conditional	compilation

C/C++ and Fortran (last versions of OpenMP: 4.0)

Preprocessor macro _OPENMP for C/C++ and Fortran

#ifdef _OPENMP
MyID = omp_get_thread_num();
#endif

Special comment for Fortran preprocessor

!$ MyID = OMP_GET_THREAD_NUM()

Helpful check of serial and parallel version of the code

Ø Taken into account when compiled with
OpenMP.
Ø Ignored if compiled in serial mode.

Summer	School,	June	25-28,	2018

Loops	in	OpenMP:	Hello	World!

$ export OMP_NUM_THREADS=2
$./a.out
Hello	World!;	My	ID	is	equal	to	[0	of	2] - I	get	the	value	[0]
Hello	World!;	My	ID	is	equal	to	[1	of	2] - I	get	the	value	[4]
Hello	World!;	My	ID	is	equal	to	[0	of	2]	- I	get	the	value	[1]
Hello	World!;	My	ID	is	equal	to	[1	of	2] - I	get	the	value	[5]
Hello	World!;	My	ID	is	equal	to	[0	of	2] - I	get	the	value	[2]
Hello	World!;	My	ID	is	equal	to	[1	of	2] - I	get	the	value	[6]
Hello	World!;	My	ID	is	equal	to	[0	of	2] - I	get	the	value	[3]
Hello	World!;	My	ID	is	equal	to	[1	of	2] - I	get	the	value	[7]

Compile and run the program

$ export OMP_NUM_THREADS=1
$./a.out
$ export OMP_NUM_THREADS=2
$./a.out
$ export OMP_NUM_THREADS=3
$./a.out
$ export OMP_NUM_THREADS=4
$./a.out

q Thread 0 gets the values: 0, 1, 2, 3
q Thread 1 gets the values: 4, 5, 6, 7
Ø Thread 0 gets the values: 0, 1, 2
Ø Thread 1 gets the values: 3, 4, 5
Ø Thread 2 gets the values: 6, 7

Example of output using:
8 loops and 2 threads

Example of output using:
8 loops and 3 threads

Summer	School,	June	25-28,	2018

What	we	have	learned	from	“Hello	World”?

v Create threads:
q C/C++: #pragma omp parallel { …….. }
q Fortran: !$omp parallel ….. !$omp end parallel

v Include the header: <omp.h> in C/C++; and use omp_lib in Fortran
v Number of threads: omp_get_num_threads()
v Thread number or rank: omp_get_thread_num()
v Set number of threads: omp_set_num_threads()
v Evaluate the time: omp_get_wtime()
v single construct: omp_single()
v Variables:

Ø default(none), shared(), private()
v Work sharing: loops, sections [section]:

Ø C/C++: #paragma omp for or #pragma omp parallel for
ü Fortran:

q !$omp do … !$omp end do
q !$omp parallel do … !$omp end parallel do

Summer	School,	June	25-28,	2018

Application	of	OpenMP:	compute	p (3.14)

Mathematically:

This function can be approximated
by a sum of rectangles:

Where each rectangle has
a width DX and height F(Xi) at
the middle of the interval [i, i+1]

0.0

0.0

4.0

1.0

Numerical integration:

Summer	School,	June	25-28,	2018

Serial	version:	compute	p (3.14)

double x, pi, sum;
int i;
sum = 0.0;
for (i = 0; i < nb_steps; i++) {

x = (i + 0.5) * step;
sum += 1.0/(1.0 + x * x);
}

pi = 4.0 * sum * step;

C/C++

real(8) :: pi, sum, x
integer :: i
sum = 0.0d0
do i = 0, nb_steps

x = (i + 0.5) * step
sum = sum + 1.0/(1.0 + x * x)

end do
pi = 4.0 * sum * step

Fortran

$ gcc compute_pi_c_seq.c
$./a.out
pi = 3.14159

Compile & run the code
$ gfortran compute_pi_f90_seq.f90
$./a.out
pi = 3.14159

Compile & run the code

Ø Directory: Example_02
Ø Files: compute_pi_c_seq.c; compute_pi_f90_seq.f90

Summer	School,	June	25-28,	2018

OpenMP version:	compute	p (3.14)

compute_pi_c_omp-template.c

File: Example_02
compute_pi_f90_omp-templtae.f90

File: Example_02

To Do:
v Add the compiler directives to create the OpenMP version:

Ø C/C++: #pragma omp parallel { …….. }
Ø Fortran: !$omp parallel ….. !$omp end parallel

v Include the header: <omp.h> in C/C++; and use omp_lib in Fortran
v Variables:

Ø default(none), shared(), private()
Ø Optionally: omp_get_wtime()

$ gcc –fopenmp compute_pi_c_omp-template.c
$ gfortran –fopenmp compute_pi_f90_omp-template.f90

Change the program and compile

Summer	School,	June	25-28,	2018

Race	condition	and	false	sharing

#pragma omp parallel default(none)
private(i) shared(x,sum) {
int i; double x;
for (i = 0; i < nb_steps; i++) {

x = (i + 0.5) * step;
sum += 1.0/(1.0 + x * x);
}

}
pi = 4.0*sum*step;

C/C++
!$omp parallel default(none)
private(i) shared(x,sum)

do i = 0, nb_steps
x = (i + 0.5) * step
sum = sum + 1.0/(1.0 + x * x)

end do
!$omp end parallel
pi = 4.0*sum*step

Fortran

compute_pi_c_omp_race.c

File: Example_02
compute_pi_f90_omp_race.f90

File: Example_02

$ gcc –fopenmp compute_pi_c_omp_race.c
$ gfortran –fopenmp compute_pi_f90_omp_race.f90

Compile and run the code

Summer	School,	June	25-28,	2018

Race	Condition	in	OpenMP

$./a.out
The value of pi is [9.09984]; Computed using [20000000] steps in [9.280] s.
$./a.out
The value of pi is [11.22387]; Computed using [20000000] steps in [11.020] s.
$./a.out
The value of pi is [5.90962]; Computed using [20000000] steps in [5.640] s.
$./a.out
The value of pi is [8.89411]; Computed using [20000000] steps in [8.940] s.
$./a.out
The value of pi is [10.94186]; Computed using [20000000] steps in [10.870] s.
$./a.out
The value of pi is [10.89870]; Computed using [20000000] steps in [11.030] s.

Run the program

compute_pi_c_omp_race.c

Compile & run the program
compute_pi_f90_omp_race.f90

Compile & run the program

How to solve this problem?Wrong answer & slower than serial program

Summer	School,	June	25-28,	2018

SPMD:	Single	Program	Multiple	Data

SPMD:

q a technique to achieve
parallelism.

q each thread receive and
execute a copy of a same
program.

q each thread will execute a
copy as a function of its ID.

#pragma omp parallel
{

for (i=0; I < n; i++) { computation[i]; }
}

C/C++

#pragma omp parallel
{
int numthreads = omp_get_num_threads();
int ID = omp_get_thread_num();
for (i=0+ID; I < n; i+=numthreads) {

computation[i][ID]; }
}

SPMD

Thread 0: 0, 3, 6, 9 ….
Thread 1: 1, 4, 7, 10, …
Thread 2: 2, 5, 8, 11, …

Ø Cyclic
Distribution

Summer	School,	June	25-28,	2018

SPMD:	Single	Program	Multiple	Data

compute_pi_c_spmd-template.c

File: Example_03/
compute_pi_f90_spmd-template.f90

File: Example_03/

v Add the compile directives to create the OpenMP version:

Ø C/C++: #pragma omp parallel { …….. }
Ø Fortran: !$omp parallel ….. !$omp end parallel

v Include the header: <omp.h> in C/C++; and use omp_lib in Fortran

v Promote the variable sum to an array: each thread will compute a sum
as a function of its ID; then compute a global sum.

v Compile and run the program.

Summer	School,	June	25-28,	2018

SPMD:	Single	Program	Multiple	Data

#pragma omp parallel
{
Int nthreads = omp_get_num_threads();
Int ID = omp_get_thread_num();
sum[id] = 0.0;
for (i = 0+ID; i < nb_steps; i+=nthreads) {

x = (i + 0.5) * step;
sum[ID] = sum[ID] + 1.0/(1.0 + x*x); }

}
compute_tot_sum(); [i = 1 to nthreads]
pi = 4.0 * tot_sum * step;

C/C++
!$omp parallel
nthreads = omp_get_num_threads()
ID = omp_get_thread_num();
sum(id) = 0.0
do i = 1+ID, nb_steps, nthreads

x = (i + 0.5) * step;
sum(ID) = sum(ID) + 1.0/(1.0 + x*x);

end do
!$omp end parallel
compute_tot_sum [i = 1 to nthreads]
pi = 4.0 * tot_sum * step

Fortran

compute_pi_c_spmd_simple.c

File: Example_03/
compute_pi_f90_spmd_simple.f90

File: Example_03/

Compile and run the code: the answer is correct but very slow than serial

Summer	School,	June	25-28,	2018

SPMD:	Single	Program	Multiple	Data

$ a.out
The	value	of	pi	is	[3.14159;	Computed	using	[20000000]	steps	in	[0.4230] seconds
The	value	of	pi	is	[3.14166;	Computed	using	[20000000]	steps	in	[1.2590] seconds
The	value	of	pi	is	[3.14088;	Computed	using	[20000000]	steps	in	[1.2110] seconds
The	value	of	pi	is	[3.14206;	Computed	using	[20000000]	steps	in	[1.9470] seconds

Execute the program

q The answer is correct
q Slower than serial program

v How to speed up the execution of pi program?
Ø Synchronization
Ø Control how the variables are shared to avoid race condition

Summer	School,	June	25-28,	2018

Synchronization	in	OpenMP
Synchronization: Bringing one or more threads to a well defined point in their
execution.

Ø Barrier: each thread wait at the barrier until all threads arrive.
Ø Mutual exclusion: one thread at a time can execute.

High level
constructs:
Ø critical
Ø atomic
Ø barrier
Ø ordered

Low level
constructs:
Ø flush
Ø locks:

Ø simple
Ø nested

Barrier Mutual exclusion

Synchronization:
Ø can reduce the performance.
Ø cause overhead and cost a lot.
Ø more barriers will serialize the
program.
Ø Use it when needed.

Summer	School,	June	25-28,	2018

Synchronization:	barrier

#pragma omp parallel
{

int ID = omp_get_thread_num();
A[ID] = Big_A_Computation(ID);

#pragma omp barrier
A[ID] = Big_B_Computation(A,ID);

}

C/C++
!$omp parallel

int ID = omp_get_thread_num()
A[ID] = Big_A_Computation(ID)

!$omp barrier
A[ID] = Big_B_Computation(A,ID)

!$omp end barrier

!$omp end parallel

Fortran

Ø Barrier:
each thread wait at the barrier
until all threads arrive.

Summer	School,	June	25-28,	2018

Synchronization:	critical

#pragma omp parallel
{

float B; int i, id, nthrds;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
for (i=id;I < niters; i+=nthrds) {

B = big_calc_job(i);
#pragma omp critical
res += consume (B);
}

}

C/C++
!$omp parallel

real(8) :: B; integer :: i, id, nthrds
id = omp_get_thread_num()
nthrds = omp_get_num_threads()
do I = id, niters, nthrds

B = big_calc_job(i);
!$omp critical

res = res + consume (B);
!$omp end critical

end do
!$omp end parallel

Fortran

Mutual exclusion:
Ø Critical: only one thread at a time can
enter a critical region (calls consume())

Summer	School,	June	25-28,	2018

Synchronization:	atomic construct

#pragma omp parallel
{

double tmp, B;
B = DOIT();
tmp = big_calculation(B);
#pragma omp atomic

X += tmp;
}

C/C++
!$omp parallel
real(8) :: tmp, B
B = DOIT()
tmp = big_calculation(B)
!$omp atomic

X = X + tmp

!$omp end parallel

Fortran

Synchronization: atomic (basic form),
Ø Atomic provides mutual exclusion but only applies to the update of a
statement of a memory location: update of X variable in the following
example.

Summer	School,	June	25-28,	2018

Reduction	construct

v Aggregating values from different threads is a common operation that
OpenMP has a special reduction variable

Ø Similar to private and shared
Ø Reduction variables support several types of operations: + - *

v Syntax of the reduction clause: reduction (op : list)

q Inside a parallel or a work-sharing construct:
Ø A local copy of each list of variables is made and initialized depending
on the “op” (e.g. 0 for “+”, 0 for -, 1 for *).
Ø Updates occur on the local copy.
Ø Local copies are reduced into a single value and combined with the
original global value.
ØThe variables in “list” must be shared in the enclosing parallel region.

Summer	School,	June	25-28,	2018

Example	of	reduction	in	OpenMP

Int MAX = 10000;
double ave=0.0;
A[MAX]; int i;

#pragma omp parallel for
reduction (+:ave)

for (i=0;I < MAX; i++) {
ave + = A[i];

}
ave = ave / MAX

C/C++
real(8) :: ave = 0.0;
integer :: MAX = 10000
real :: A(MAX); integer :: I

!$omp parallel do reduction(+:ave)
do i = 1, MAX

ave = ave + A(i)
end do

!$omp end parallel do
ave = ave / MAX

Fortran

v The variable ave is initialized outside the parallel region.
v Inside the parallel region:

Ø Each thread will have its own copy, initialize it, update it.
Ø At the end, all the local copies will be reduced to a final result.

Summer	School,	June	25-28,	2018

Critical	and	reduction

v Start from the sequential version of pi program, the add the compile
directives to create the OpenMP version:

Ø C/C++: #pragma omp parallel { …….. }
Ø Fortran: !$omp parallel ….. !$omp end parallel
Ø Include the header: <omp.h> in C/C++; and use omp_lib in Fortran

v Use the SPMD pattern with critical construct in one version and
reduction in the second one.
v Compile and run the programs.

C/C++: compute_pi_c_omp_critical-template.c
compute_pi_c_omp_reduction-template.c

F90: compute_pi_f90_omp_critical-template.f90
compute_pi_f90_omp_reduction-template.f90

Files: Example_04/

Summer	School,	June	25-28,	2018

Critical	and	reduction

$ a.out
The	Number	of	Threads	=	1	
The	value	of	pi	is	[3.14159];	Computed	using	[20000000]	steps	in	[0.40600] seconds
The	Number	of	Threads	=	2	
The	value	of	pi	is	[3.14159];	Computed	using	[20000000]	steps	in	[0.20320] seconds
The	Number	of	Threads	=	3	
The	value	of	pi	is	[3.14159];	Computed	using	[20000000]	steps	in	[0.13837] seconds
The	Number	of	Threads	=	4	
The	value	of	pi	is	[3.14159];	Computed	using	[20000000]	steps	in	[0.10391] seconds

Example of output

q Results:

Ø Correct results.
Ø The program runs faster (4 times faster using 4 cores).

Summer	School,	June	25-28,	2018

Summary
OpenMP:

q create threads:
Ø C/C++ #pragma omp parallel { … }
Ø Fortran: !$omp parallel … !$omp end parallel

q Work sharing: (loops and sections).

q Variables: default(none), private(), shared()
Ø Environment variables and runtime library.

Few construct of OpenMP:
Ø single construct
Ø barrier construct
Ø atomic construct
Ø critical construct
Ø reduction clause

omp_set_num_threads()
omp_get_num_threads()
omp_get_thread_num()
omp_get_wtime()

For more advanced runtime library clauses
and constructs, visit:
http://www.openmp.org/specifications/

Summer	School,	June	25-28,	2018

Concluding	remarks

OpenMP - API:

Ø Simple parallel programming for shared memory machines.
Ø Speed up the execution (but not very scalable).
Ø compiler directives, runtime library, environment variables.

Take a serial code, add the compiler directives and test:

Ø Define concurrent regions that can run in parallel.
Ø Add compiler directives and runtime library.
Ø Control how the variables are shared.
Ø Avoid the false sharing and race condition by adding synchronization
clauses (chose the right ones).
Ø Test the program and compare to the serial version.
Ø Test the scalability of the program as a function of threads.

Summer	School,	June	25-28,	2018

More	readings

Ø OpenMP: http://www.openmp.org/

Ø Compute Canada Wiki: https://docs.computecanada.ca/wiki/OpenMP

Ø Reference cards: http://www.openmp.org/specifications/

Ø OpenMP Wiki: https://en.wikipedia.org/wiki/OpenMP

Ø Examples:

http://www.openmp.org/updates/openmp-examples-4-5-published/

Ø Contact: support@westgid.ca

Ø WestGrid events: https://www.westgrid.ca/events

Thank you

Summer	School,	June	25-28,	2018

UofM-Summer-School,	June	25-28,	2018

