Introduction to Parallel Programming
for shared memory machines using
OpenMP

»®
Z > . 2 4
~o@ VEST;RID Ali Kerrache ZEE | e

E-mail: ali.kerrache@umanitoba.ca

A
=¥ [JNIVERSITY ‘;{Vﬁ&' compune | o
[& or MANITOBA Summer School, June 25-28, 2018 PR

~ T i

*9 "'=°GRID OUtIine

] Introduction to parallel programming (OpenMP)
J Definition of OpenMP API
» Constitution of an OpenMP program
» OpenMP programming Model
> [C/C++, Fortran]: compiler directives
> Run or submit an OpenMP job [SLURM, PBS]
(] Learn OpenMP by Examples
» Hello World program
Work sharing in OpenMP
v" Sections
v Loops
» Compute pi=3.14
Serial and Parallel versions
Race condition
SPMD model
Synchronization

UNIVERSITY F,’fgg{ compute | caeul
= o MANITOBA Summer School, June 25-28, 2018 i

l‘l

~@ WESTRID Download the support material

] Use ssh client: PuTTy, MobaXterm, Terminal (Mac or Linux) to
connect to cedar and/or graham:

» ssh -Y username@cedar.computecanada.ca

» ssh -Y username@graham.computecanada.ca

] Download the files using wget:
wget https://ali-kerrache.000webhostapp.com/uofm/openmp.tar.gz
wget https://ali-kerrache.000webhostapp.com/uofm/openmp-slides.pdf

Or from the website
https://westgrid.github.io/manitobaSummerSchool2018/

d Unpack the archive and change the directory:
tar -xvf openmp.tar.gz
cd UofM-Summer-School-OpenMP

1 o Manion 31%{ Samaga™ | eanath
L1k o MANITOBA Summer School, June 25-28, 2018 >

S WESTRID Concurrency and parallelism

Concurrency:

] Condition of a system in which
multiple tasks are logically active at
the same time ... but they may not
necessarily run in parallel.

- subset of concurrency

. Condition of a system in which
multiple tasks are active at the
same time and run in parallel.

What do we mean by parallel machines?

UNIVERSITY L comme e
L1k of MANITOBA Summer School, June 25-28, 2018 i

P

< WESTRiD Introduction of parallel programming

Serial Programming:

: Example:
» Develop a serial program. Time
° L]] ‘)
» Performance & Optimization? 1 Core 4 Cores I I I I
But in real world: o
» Run multiple programs. Parallelzation >

Execution in parallel

» Large & complex problems.

» Time consuming. With 4 cores:
Execution time reduced
Solution: v by a factor of 4

»> Use Parallel Machines.

» Use Multi-Core Machines. . .
What is Parallel Programming?

Why Parallel? Obtain the same amount of
> Reduce the execution time. computation with multiple
> Run multiple programs. cores at low frequency (fast).

UNIVERSITY BIEE comp e
Lia o MANITOBA Summer School, June 25-28, 2018 %

A,
-

‘l'zWESEFuD

Distributed Memory Machines

» Each processor has its own memory.
» The variables arec independent.

» Communication by passing messages
(network).

Multi-Processing

» Difficult to program.
»> Scalable.

MPI based programming

UNIVERSITY
L& of MANITOBA

Parallel machines & parallel programming

Shared Memory Machines
v

SHARED MEMORY

» All processors share the same memory.
» The variables can be shared or private.
» Communication via shared memory.

Multi-Threading

> Portable, easy to program and use.
» Not very scalable.

OpenMP based programming

Summer School, June 25-28, 2018 e Tl

~ZFWESTRID Definition of OpenMP: API

<+ Library used to divide computational work in a program and add parallelism
to a serial program (create threads).

<+ Supported by compilers: Intel (ifort, icc), GNU (gcc, gfortran, ...).

<+ Programming languages: C/C++, Fortran.

<» Compilers: http://www.openmp.org/resources/openmp-compilers/

UNIVERSITY compute | osiout
ot MANITOBA Summer School, June 25-28, 2018

Construction of an OpenMP program

What is the OpenMP programming model?

UNIVERSITY e e comeunecatem
or MANITOBA Summer School, June 25-28, 2018

~ZFWESTRD OpenMP model: Fork-Join parallelism

—_— —
—_— s

~ 2 Serial ~ 2
“Region > 2 22 Region > 2 22

Region

— s

— =

Serial region: master thread Nested
Parallel region: all threads Region 3

Serial
Region

& Master thread spawns a team of threads as needed. S = > =
o o
[b

& The Parallelism is added incrementally: that is, the
sequential program evolves into a parallel program. —

Serial Program —_—

Define the regions to parallelize, then add OpenMP directives

UNIVERSITY ‘%gg: et b
[& o MANITOBA Summer School, June 25-28, 2018 P

-,

~SZFWESTR 1D Learn OpenMP by examples

*» Example 00: Threads creation.
v How to go from a serial code to a parallel code?
v How to create threads?
v Introduce some constructs of OpenMP.
v" Compile and run an OpenMP program
v" submit an OpenMP job
< Example 01: Work sharing using:
v Loops
v" Sections
* Example 02: Common problem in OpenMP programming.
v False sharing and race conditions.
< Example 03: Single Program Multiple Data model:
v" as solution to avoid race conditions.
“* Example 04:
v More OpenMP constructs.
v" Synchronization.

3 UNIVERSITY E’f:@f{ ol
= o MANITOBA Summer School, June 25-28, 2018 i

e

— A

e WEST-
" WES L:RlD

OpenMP: simple syntax

Most of the constructs in OpenMP are compiler directives or pragma:

¢ For C/C++, the pragma take the form:

#pragma omp construct [clause [clause]...]

¢ For Fortran, the directives take one of the forms:

'SOMP construct [clause [clause]...]
CSOMP construct [clause [clause]...]
*$OMP construct [clause [clause]...]

v' For C/C++ include the Header file:
v" For Fortran 90 usec the module:
v" For F77 include the Header file:

UNIVERSITY
(& of MANITOBA

use omp lib

Summer School, June 25-28, 2018

4 #include <omp.h> A
#pragma omp parallel
d
Block of a C/C++ code;
\J /
4 use omp_lib A
!Somp parallel
Block of Fortran code
'Somp end parallel
N J

#include <omp.h>

include ‘omp _lib.h’

] "
~o@ VEST;RID

Most of OpenMP constructs apply to structured blocks

Parallel regions and structured blocks

(J Structured block: a block with one point of entry at the top and one point of

exit at the bottom.

 The only “branches” allowed are STOP statements in Fortran and exit() in

C/C++

#pragma omp parallel

{

int id = omp_get_thread_num();

more: res[id] = do_big_job (id); —

Horegma-omp-paratlel
{

if (conv (res[id]) goto more; —_

}
printf (“All done\n”);

if (go_now()) goto more;

UNIVERSITY
of MANITOBA

Summer School, June 25-28, 2018

~SZFWES T Compile and run OpenMP program

J Compile and enable OpenMP library:
» GNU: add —fopenmp to C/C++ & Fortran compilers.
» Intel compilers: add —openmp, -qopenmp (accepts also —fopenmp)
v’ PGI Linux compilers: add —mp
v Windows: add /Qopenmp

] Set the environment variable: OMP _NUM THREADS
v OpenMP will spawns one thread per hardware thread.
> $§ export OMP NUM THREADS=value (bash shell)
> § setenv OMP NUM THREADS value (tcsh shell)
value: number of threads [For example 4 |

] Execute or run the program:
> § ./exec_program {options, parameters} or ./a.out

=% UNIVERSITY 3
o MANTTOBA Summer School, June 25-28, 2018 4

v 3
< >
28
3
g
8

l.l

~ZFWESTR D Submission script: SLURM

#!/bin/bash Resources:
#SBATCH --nodes=1 O nodes=1
#SBATCH --ntasks=1 0 ntasks=1

#SBATCH --cpus-per-task=4

d cpus-per-task=1 to number of cores
#SBATCH --mem-per-cpu=2500M pus-p u

#SBATCH —time=0-00:30 per node
Load compiler module and/or your » Cedar: nodes with 32 or 48 cores
application module. » Graham: nodes with 32 cores

» Niagara: nodes with 40 cores

cd SSLURM_SUBMIT DIR
export OMP_NUM_THREADS=$SLURM_CPUS_PER TASK

echo "Starting run at: "date™"
Jyour openmp_program_exec {options and/or parameters}

echo "Program finished with exit code $? at: "date™"

UNIVERSITY },’M - oo ostand
[14 oft MANITOBA Summer School, June 25-28, 2018 i

— 74

~SZFWESTm D Submission script: PBS

#!/bin/bash Resources:
#PBS -S /bin/bash v nodes=1
#PBS -1 nodes=1:ppn=4

\/ — .
#PBS —I pmem=2000mb ppn=1 to maximum of N CPU (hardware)

v nodes=1:ppn=4 (for example).

#PBS -1 walltime=24:00:00
#PBS —M <your-valid-email>

#PBS —m abe # On systems where $PBS_NUM_PPN is not
available, one could use:

Load compiler module CORES="/bin/awk 'END {print NR}'

and/or your application $PBS_NODEFILE®

module.

export OMP_NUM_THREADS=$CORES

cd SPBS_ O WORKDIR

echo "Current working directory is pwd "

export OMP_NUM_ THREADS=$PBS NUM_PPN <——
Jyour_openmp_exec < input_file > output_file

echo "Program finished at: "date™"

=% UNIVERSITY E’:%{ compute | caeul
o MANTTOBA Summer School, June 25-28, 2018 PR

-,

~o@ "ESTRiD Data environment

» only a single instance of variables in shared memory.

shared] :
» all threads have read and write access to these variables.

» Each thread allocates its own private copy of the data.
private » These local copies only exist in parallel region.
» Undefined when entering or exiting the parallel region.

firstprivate > Vari?ples are alscz d.elea.red to ‘pe private. N |
» additionally, get initialized with value of original variable.
lastprivate » declares variables as private.

» variables get value from the last iteration of the loop.

C/C++: default (shared | none)
Fortran: default (private | firstprivate | shared | none)

It is highly recommended to use: default (none)

UNIVERSITY whLr

L& o MANITOBA Summer School, June 25-28, 2018 £

~SZEWES TR Hello World! : serial version

“*Objective: simple serial program in C/C++ and Fortran
¢ Directory: Example 00 {hello c seq.c; hello 90 seq.f90}

C/C++ program Fortran 90 program

#include <stdio.h> program Hello

int main() { implicit none
printf("Hello World\n"); write(*,*) "Hello World"

} end program Hello

*»To do: compile and run the serial program (C/C++ or Fortran).
d C/C++:

» icc [CFLAGS] hello ¢ seq.c —o exec prog.x

» gce [CFLAGS] hello ¢ seq.c —o exec prog.x
] Fortran:

» ifort [FFLAGS] hello 90 seq.f90 —o exec prog.x

» gfortran [FFLAGS] hello 90 seq.f90 —o exec prog.x
(d Run the program: ./a.out or ./exec prog.x

UNIVERSITY L comme e
Lia o MANITOBA Summer School, June 25-28, 2018 PR

~ZFWEST R Hello World! : parallel version

“*Objective: create a parallel region and spawn threads.
¢ Directory: Example 00
 Templates: hello ¢ omp-template.c; hello 90 omp-template.f90

For C/C++ program For Fortran 90 program

#include <omp.h> use omp _lib
#pragma omp parallel ISomp parallel

{

} I$omp end parallel
*»To do:

Edit the program template and add OpenMP directives:
v" compiler directives.

Compile and run the program of your choice (C/C++, Fortran).
v" Set the number of threads to 4 and run the program.
v" Run the same program using 2 and 3 threads.

fﬁ

4-?;'
g
88
23

g

g

= [JNIVERSITY =
ik 2 MANITOBA Summer School, June 25-28, 2018 P

~ WEST;R|p Hello World!

#include <omp.h> <« program Hello
#include <stdio.h> Header use omp_lib < module
int main() { implicit none
#pragma omp parallel ISomp parallel < -
{ Comoiler write(*,*) "Hello World" Compiler
printf("Hello World\n"); dire c':iv o I$omp end parallel directives
} o<
} end program Hello
¢ C and C++ use exactly the same constructs.
¢ Slight differences between C/C++ and Fortran.
Next example: helloworld * template.™ Runtime Library
Thread rank: > omp get thread num();
Number of threads: > omp get num_threads();
Set number of threads: > omp set num_threads() ;
Compute time: > omp get wtime() ;
UNIVERSITY },"’%{ compute | cateut

o MANTTOBA Summer School, June 25-28, 2018 i

-

S WESTR Overview of the program Hello World!

#include <omp.h>
#define NUM_THREADS 4
int main() {

int ID, nthr, nthreads; double start_time, elapsed_time;

Development: set number of threads.
Production: use OMP_NUM_THREADS

omp_set_num_threads(NUM_THREADS); Set OMP NUM THREADS
nthr = omp_get_num_threads(); Get number of threads (Nth = 1)

start_time = omp_get_wtime();
(#pragma omp parallel default(none) private(ID) shared(nthreads) {)

ID = omp_get_thread_num(); nthreads = omp_get_num_threads();
printf("Hello World!; My ID is equal to [%d] — The total of threads is: [%d]\n",

_ 1D, nthreads); } J
elapsed_time = omp_get_wtime() - start_time; Compute elapsed time.
printf("\nThe time spend in the parallel region is: %f\n\n", elapsed_time);
nthr = omp_get_num_threads(); Get OMP_NUM_THREADS
printf(“Number of threads is: %d\n\n",nthr); Print number of threads (Nth = 1)

}

A
UNIVERSITY ‘XI’M & compute | catoul

or MANITOBA Summer School, June 25-28, 2018 PR

< WESTRID Execution of the program Hello World!

$ icc —openmp helloworld_c_omp.c $ ifort —openmp helloworld f90 _omp.f90
$ gcc —fopenmp helloworld ¢ _omp.c $ gfortran —-fopenmp helloworld_f90_omp.f90

Run the program for OMP_NUM_ THREADS between 1 to 4

Execute the program

$ export OMP_NUM THREADS=4
$ /a.out
Hello World!; My ID is equal to [0] - The total of threads is: [4]
Hello World!; My ID is equal to [3] - The total of threads is: [4] 2 ,e:f,z': OMP_NUM_THREADS
Hello World!; My ID is equal to [1] - The total of threads is: [4] $ export OMP_NUM_THREADS=2
Hello World!; My ID is equal to [2] - The total of threads is: [4] gggﬁ; OMP NUM THREADS=3
$ /a.out $ Ja.out
Hello World!; My ID is equal to [3] - The total of threads is: [4] g 7;23? OMP_NUM_THREADS=4
Hello World!; My ID is equal to [0] - The total of threads is: [4]
Hello World!; My ID is equal to [2] - The total of threads is: [4]
Hello World!; My ID is equal to [1] - The total of threads is: [4]

UNIVERSITY ?‘“.;"g'{ someere | e,

or MANITOBA Summer School, June 25-28, 2018 i

=< 24
Y

~ZFWEsTRp Work sharing: loops in OpenMP

OpenMP directives for loops:

#pragma omp parallel—

d C/C++ {

>#pragma omp parallel for { ... } #pragma omp for

»>#pragma omp for { ... } f:alc()' \

} —

J Fortran } /
1SOMP PARALLEL DO #pragma omp parallel for { calc(); }
ISOMP END PARALLEL DO

ISomp parallel
1ISomp do }
'SOMP DO 1ISomp end do \
I$Somp end parallel
1OMP END DO I$omp parallel do }
I$omp end parallel do
UNIVERSITY 3’%&'{ Sammpute | cateut

Lk of MANITOBA Summer School, June 25-28, 2018 R

= NESTRiD Work sharing: loops in OpenMP

#pragma omp parallel 1I$Somp parallel

{ ISomp do

#pragma omp for doi=1, nloops

do_some_computation
for (i=0; i < nloops; i++) \ end do \
do_some_computation(); 1$omp end do
} | 1I$Somp end parallel |
#pragma omp parallel for { } / I$omp parallel do

1Somp end parallel do

-. or loops .-

UNIVERSITY 2L compue | calow
or MANITOBA Summer School, June 25-28, 2018 i

~ZFNES TR Loops in OpenMP: Hello World!

#include <omp.h>)
#define nloops 8 File: Example 01/

int main() helloworld_loop_c_omp.cpp

{
int ID, nthreads;

#pragma omp parallel default(none) private(ID) shared(nthreads) {
ID = omp_get_thread _num();

if (ID ==0) { nthreads = omp_get_num_threads(); }

int i;
#pragma omp for #pragma omp single
for (i = 0; i < nloops; i++) { nthreads = omp_get num_threads();
printf("Hello World!;
My ID is equal to [%d of %d] —
| get the value [%d]\n",ID,nthreads,i); }
}
}
A
=% UNIVERSITY ;;fgi compte | cateut
o MANTTOBA Summer School, June 25-28, 2018 A

L

< WEsTap Directives on multiple lines

C/C++

#pragma omp parallel list-of-some-directives \
list-of-other-directives \
list-of some-other-directives The list of directives

d continues on the next lines
structured block of C/C++ code;

}

'Somp parallel list-of-some-directives &
'Somp list-of-other-directives &

'Somp list-of some-other-directives
structured block of Fortran code

'Somp end parallel

The list of directives
continues on the next lines

=% UNIVERSITY ‘S:f‘{gi compute | caeul
o MANTTOBA Summer School, June 25-28, 2018 PR

L

~ZFWESTRin Loops in OpenMP: Hello World!

use omp_lib

implicit none File: Example 01/

integer :: ID, nthreads, i
integer, parameter :: nloops = 8 helloworld loop f90 omp.f90

ISomp parallel default(none) shared (nthreads) private(ID)
ID = omp_get_thread_num()
if (ID ==0) nthreads = omp_get _num_threads()

I$Somp single
nthreads = omp_get_num_threads|()

I$omp do I$omp end single

doi =0, nloops -1
write(*,fmt="(a,l2,a,12,a,12,a)") "Hello World!, My ID is equal to &
&[", ID, " of ",nthreads, "] -1 get the value [“,i, "]"
end do
1I$Somp end do
ISomp end paralle

=% UNIVERSITY 5’,‘,%{ compute | caeul
Lia o MANITOBA Summer School, June 25-28, 2018 PR

Conditional compilation

C/C++ and Fortran (last versions of OpenMP: 4.0)

Preprocessor macro _ OPENMP for C/C++ and Fortran

#ifdef OPENMP
MyID = omp get thread num();
#endif

» Taken into account when compiled with
OpenMP.
» Ignored if compiled in serial mode.

Special comment for Fortran preprocessor

1$ MyID = OMP_GET THREAD NUM()

Helpful check of serial and parallel version of the code

UNIVERSITY

T, ot MANITOBA Summer School, June 25-28, 2018 £ S

_~ 74

“*@ VESGRrID

Loops in OpenMP: Hello World!

Compile and run the program

$ export OMP_NUM THREADS=2

$./a.out

Hello World!; My ID isequalto [0 of 2] - | get the value [0]
Hello World!; My ID isequalto[10of 2] -1 get the value[4]
Hello World!; My ID isequalto [0 of 2] -1 get the value [1]
Hello World!; My ID isequalto[10of 2] - | get the value [5]
Hello World!; My ID is equalto [0 of 2] - | get the value [2]
Hello World!; My ID isequalto[10of 2] - | get the value [6]
Hello World!; My ID is equalto [0 of 2] - | get the value [3]
Hello World!; My ID isequalto[10of 2] -1 get the value [7]

$ export OMP_NUM_THREADS=1
$./Ja.out
$ export OMP_NUM_THREADS=2
$.Ja.out
$ export OMP_NUM_THREADS=3
$.Ja.out
$ export OMP_NUM_ THREADS=4
$.Ja.out

<€

Thread 0 gets the values: 0,1, 2,3
Thread 1 gets the values: 4, 5, 6, 7

Thread 0 gets the values: 0,1,

Example of output using:
8 loops and 2 threads

2
Thread 1 gets the values: 3,4, 5 <
7

Example of output using:

8 loops and 3 threads
Thread 2 gets the values: 6, P
UNIVERSITY }iﬁg’{ s o
or MANITOBA Summer School, June 25-28, 2018 i

—L 24

<@ =tp What we have learned from “Hello World”?

% Create threads:
d C/C++: #pragma omp parallel { }
] Fortran: !$Somp parallel !Somp end parallel

¢ Include the header: <omp.h> in C/C++; and use omp_lib in Fortran
** Number of threads: omp get num threads()
¢ Thread number or rank: omp get thread num()
¢ Set number of threads: omp set num_threads()
< Evaluate the time: omp get wtime()
¢ single construct: omp_single()
¢ Variables:
» default(none), shared(), private()
“* Work sharing: loops, sections [section]:
» C/C++: #paragma omp for or #pragma omp parallel for
v’ Fortran:

O !Somp do ... !Somp end do
O !Somp parallel do ... !Somp end parallel do

=% UNIVERSITY 5’,‘,%{ compute | caeul
o MANTTOBA Summer School, June 25-28, 2018 PR

<@ =wpo Application of OpenMP: compute 7 (3.14)

Mathematically: Numerical integration:

. —~dx=T
o 1+ x° 4.0

This function can be approximated >
by a sum of rectangles:

0.0
Z FIXi)AX ¥ &

Where each rectangle has
a width AX and height F(X,) at 0.0 % >
the middle of the interval [i, i+1] 1.0

=% UNIVERSITY E’:%{ compute | caeul
o MANTTOBA Summer School, June 25-28, 2018 PR

— 74

<P WESTp Serial version: compute 7 (3.14)

» Directory: Example 02
» Files: compute pi ¢ seq.c; compute pi f90 seq.f90

double x, pi, sum; real(8) :: pi, sum, X
int i integer :: |
sum = 0.0; sum = 0.0d0
for (i = 0; i < nb_steps; i++) { doi=0, nb_steps

x = (i + 0.5) * step; x = (i + 0.5) * step

sum += 1.0/(1.0 + x * x); sum =sum + 1.0/(1.0 + x * x)

} end do
pi = 4.0 * sum * step; =4.0 * sum * step

Compile & run the code Compile & run the code
$ gcc compute pi ¢ seq.c $ gfortran compute _pi f90 seq.f90
$./a.out $./a.out
pi = 3.14159 pi = 3.14159
UNIVERSITY 5’1’%{ compute | caleut

or MANITOBA Summer School, June 25-28, 2018 PR

S WESTRID OpenMP version: compute 7t (3.14)

File: Example 02 File: Example 02

compute_pi_c_omp-template.c compute_pi_f90_omp-templtae.fo0
To Do:
“* Add the compiler directives to create the OpenMP version:

» C/C++: #pragma omp parallel { }

» Fortran: !Somp parallel 'Somp end parallel
¢ Include the header: <omp.h> in C/C++; and use omp _lib in Fortran
¢ Variables:

» default(none), shared(), private()
» Optionally: omp get wtime()

Change the program and compile

$ gcc —fopenmp compute pi_c_omp-template.c
$ gfortran —fopenmp compute pi_f90_omp-template.fo0

=% UNIVERSITY ‘S:f‘{gi compute | caeul
Lia o MANITOBA Summer School, June 25-28, 2018 PR

"'l~

WVESTGRID

Race condition and false sharing

File: Example 02 File: Example 02

compute_pi_c_omp_race.c

compute pi f90 omp_race.f90

#pragma omp parallel default(none)
private(i) shared(x,sum) {
int i; double x;
for (i = 0; i < nb_steps; i++) {
x = (i + 0.5) * step;
sum +=1.0/(1.0 + x * x);
}
}

pi = 4.0*sum*step;

ISomp parallel default(none)
private(i) shared(x,sum)

doi=0, nb_steps
x = (i + 0.5) * step
sum = sum + 1.0/(1.0 + x * x)
end do
1Somp end parallel
pi = 4.0*sum*step

Compile and run the code

$ gcc —fopenmp compute pi_c_omp_race.c

$ gfortran —fopenmp compute pi_f90 _omp race.fo0

UNIVERSITY
(& o MANITOBA

Summer School, June 25-28, 2018 E

o

@ VESTRID Race Condition in OpenMP

Compile & run the program Compile & run the program

compute_pi_c_omp_race.c | compute pi f90 omp_race.f90 |

Run the program

:Tlr;lea.\:)alljlje of piis[9.09984]; Computed using [20000000] steps in[9.280] s.
:Tlr;lea.\?alljttje of piis [11.22387]; Computed using [20000000] steps in [11.020] s.
iﬁga;;T:e of piis[5.90962]; Computed using [20000000] stepsin[5.640] s.
:Tllf.mlea.\;llj:e of piis[8.89411]; Computed using [20000000 | stepsin[8.940] s.
:Tlr.\l:‘.\:)alljl:e of piis [10.94186]; Computed using [20000000] steps in [10.870] s.
:Tlr;lea.\:)alljlje of piis [10.89870]; Computed using [20000000] steps in [11.030] s.

Wrong answer & slower than serial program How to solve this problem?

V T > ugﬂ
UN I E R s I Y &, '§?v compute | calcul
“":VV canada canada

[& o MANITOBA Summer School, June 25-28, 2018

~@ VESTRID SPMD: Single Program Multiple Data

SPD:

] a technique to achieve #pragma omp parallel
parallelism. {

for (i=0; | < n; i++) { computation([i]; }
] each thread receive and }

execute a copy of a same

program. SPMD

#pragma omp parallel
] each thread will execute a {p J o P

copy as a function of its ID. int numthreads = omp_get_num_threads();
int ID = omp_get _thread _num();

> Cyclic ~ I'hread0:0, 3,6, 9 for (i=0+ID; | < n; i+=numthreads) {
Distribution 10hread 1:1, 4, 7, 10, .. computation[i][ID]; }
Thread 2: 2, 5, 8, 11, ... }
UNIVERSITY ‘g:}:&éi Somapatte | cateut,

or MANITOBA Summer School, June 25-28, 2018 P

~ZFWES TR SPMD: Single Program Multiple Data

File: Example 03/ File: Example 03/

compute pi_c_spmd-template.c compute_pi_f90_spmd-template.f90

“* Add the compile directives to create the OpenMP version:

» C/C++: #pragma omp parallel { }
» Fortran: !Somp parallel !Somp end parallel

¢ Include the header: <omp.h> in C/C++; and use omp_lib in Fortran

“* Promote the variable sum to an array: each thread will compute a sum
as a function of its ID; then compute a global sum.

¢ Compile and run the program.

= UNIVERSITY ‘s}:kgi Sompute | Cateu,
L& or MANITOBA Summer School, June 25-28, 2018 PR

‘; - [l =g

%
@ VESGRID

File: Example 03/ File: Example 03/

compute _pi_c_spmd_simple.c compute_pi_f90_spmd_simple.f90

SPMD: Single Program Multiple Data

#pragma omp parallel
{
Int nthreads = omp_get_num_threads();
Int ID = omp_get _thread _num();
sum[id] = 0.0;
for (i= 0+ID; i < nb_steps; i+=nthreads) {
x = (i +0.5) * step;
sum[ID] = sum[ID] + 1.0/(1.0 + x*x); }
}
compute _tot sum(); [i = 1 to nthreads]
pi = 4.0 * tot_sum * step;

I$omp parallel
nthreads = omp_get num_threads()
ID = omp_get_thread _num();
sum(id) = 0.0
doi=1+ID, nb_steps, nthreads

x = (i +0.5) * step;

sum(ID) = sum(ID) + 1.0/(1.0 + x*x);
end do
I$omp end parallel
compute tot sum [i= 1 to nthreads]
pi = 4.0 * tot_sum * step

Compile and run the code: the answer is correct but very slow than serial

UNIVERSITY
(& o MANITOBA

Summer School, June 25-28, 2018 "v‘*

S

4-?;'
N
: 3

g

g

»>

»

=@ WESTRip SPMD: Single Program Multiple Data

Execute the program

$ a.out
The value of piis [3.14159; Computed using [20000000] steps in [0.4230] seconds

The value of piis [3.14166; Computed using [20000000] steps in [1.2590] seconds
The value of piis [3.14088; Computed using [20000000] steps in [1.2110] seconds
The value of piis [3.14206; Computed using [20000000] steps in [1.9470] seconds

(] The answer is correct
1 Slower than serial program

“* How to speed up the execution of pi program?
» Synchronization
» Control how the variables are shared to avoid race condition

UNIVERSITY
or MANITOBA Summer School, June 25-28, 2018 PR

—L 24

~ZFWesTRiD Synchronization in OpenMP

Synchronization: Bringing one or more threads to a well defined point in their
execution.

Barrier: each thread wait at the barrier until all threads arrive.
Mutual exclusion: one thread at a time can execute.

Barrier Mutual exclusion

High level Low level Synchronization:
constructs: constructs: » can reduce the performance.
> critical > flush » cause overhead and cost a lot.
> atomic > locks: » more barriers will serialize the
» barrier » simple program.
> ordered > nested » Use it when needed.

UNIVERSITY s

[& o MANITOBA Summer School, June 25-28, 2018 H TS

L 74

~%@ VESTRiD Synchronization: barrier

#pragma omp parallel 1I$Somp parallel
{ int ID = omp_get thread _num()
int ID = omp_get thread _num(); A[ID] = Big_A_Computation(ID)

A[ID] = Big_A_Computation(ID);
1ISomp barrier

#pragma omp barrier A[ID] = Big_B_Computation(A,ID)
A[ID] = Big_B_Computation(A,ID); 1ISomp end barrier
} 1ISomp end parallel

> Barrier:
each thread wait at the barrier
until all threads arrive.

A
=® [UNIVERSITY ‘?yiéf o
o MANTTOBA Summer School, June 25-28, 2018 PR

_~ 74

Z 4

@ VESTRID

Synchronization: critical

#pragma omp parallel

{
float B; int i, id, nthrds;
id = omp_get_thread _num();
nthrds = omp_get num_threads();
for (i=id;l < niters; i+=nthrds) {
B = big_calc_job(i);
#pragma omp critical
res += consume (B);

}

1ISomp parallel
real(8) :: B; integer :: i, id, nthrds
id = omp_get_thread _num()
nthrds = omp_get_num_threads()
do | = id, niters, nthrds
B = big_calc_job(i);
I$Somp critical
res = res + consume (B);
I$omp end critical
end do
1ISomp end parallel

Mutual exclusion:

» Critical: only one thread at a time can
enter a critical region (calls consume())

UNIVERSITY
(& o MANITOBA

Summer School, June 25-28, 2018 £ S

< WEsTR Synchronization: atomic construct

Synchronization: atomic (basic form),
Atomic provides mutual exclusion but only applies to the update of a
statement of a memory location: update of X variable in the following

example.

#pragma omp parallel I$Somp parallel
{ real(8) :: tmp, B

double tmp, B; B = DOIT()

B = DOIT(); tmp = big_calculation(B)

tmp = big_calculation(B); ISomp atomic

#pragma omp atomic X=X+tmp

X += tmp;
} '$omp end parallel
=™ UNIVERSITY ‘x’ﬁf‘éi compute | cat
o MANTTOBA Summer School, June 25-28, 2018 P

~SZFWESTR 1D Reduction construct

% Aggregating values from different threads is a common operation that
OpenMP has a special reduction variable

» Similar to private and shared
» Reduction variables support several types of operations: + - *

“* Syntax of the reduction clause: reduction (op : list)

(] Inside a parallel or a work-sharing construct:
» A local copy of each list of variables is made and initialized depending
on the “op” (e.g. 0 for “+”, 0 for -, 1 for *).
» Updates occur on the local copy.
> Local copies are reduced into a single value and combined with the
original global value.
»The variables in “list” must be shared in the enclosing parallel region.

UNIVERSITY F,’fgg{ compute | caeul
= o MANITOBA Summer School, June 25-28, 2018 i

& WESTRp Example of reduction in OpenMP

Int MAX =10000; real(8) :: ave = 0.0;
double ave=0.0; integer :: MAX = 10000
A[MAX]; int i; real :: A(MAX); integer :: |
#pragma omp parallel for 1I$omp parallel do reduction(+:ave)
reduction (+:ave) doi=1, MAX

for (i=0;1 < MAX; i++) { ave = ave + A(i)

ave + = A[i]; end do
} 1Somp end parallel do
ave = ave /| MAX ave = ave /| MAX

<+ The variable ave is initialized outside the parallel region.
¢ Inside the parallel region:
» Each thread will have its own copy, initialize it, update it.
» At the end, all the local copies will be reduced to a final result.

K
8
23
g
g

= [JNIVERSITY =
ik 2 MANITOBA Summer School, June 25-28, 2018 g

@ VESTRID Critical and reduction

Files: Example 04/

C/C++;: compute pi_c_omp_critical-template.c
compute pi_c_omp_reduction-template.c

F90: compute_pi_f90_omp_critical-template.f90
compute pi_f90 _omp_reduction-template.f90

*» Start from the sequential version of pi program, the add the compile

directives to create the OpenMP version:
» C/C++: #ipragma omp parallel { }
» Fortran: !Somp parallel 'Somp end parallel

» Include the header: <omp.h> in C/C++; and use omp _lib in Fortran

“* Use the SPMD pattern with critical construct in one version and
reduction in the second one.
¢ Compile and run the programs.

=% UNIVERSITY E’:%{ compute | caeul
o MANTTOBA Summer School, June 25-28, 2018 PR

%@ VESTRID Critical and reduction

Example of output

$ a.out

The Number of Threads =1

The value of piis [3.14159 |; Computed using [20000000] stepsin [0.40600] seconds
The Number of Threads = 2

The value of piis [3.14159 |; Computed using [20000000] steps in [0.20320] seconds
The Number of Threads = 3

The value of piis [3.14159 |; Computed using [20000000] steps in [0.13837] seconds
The Number of Threads =4

The value of piis [3.14159 |; Computed using [20000000] stepsin[0.10391] seconds

Results:

» Correct results.
» The program runs faster (4 times faster using 4 cores).

A
UNIVERSITY ‘K,fk'{g{ Sammpute | cateut
or MANITOBA Summer School, June 25-28, 2018 W

-,

=@ VESTRID Summary
OpenMP:

U create threads:

» C/C++ #pragma omp parallel {...}

» Fortran: !Somp parallel ... !Somp end parallel
J Work sharing: (loops and sections).

U Variables: default(none), private(), shared()
» Environment variables and runtime library.

omp_set num_threads()
omp get num_threads()
Few construct of OpenMP: omp get thread num()

> single construct omp_get_wtime()
» barrier construct
» atomic construct
» critical construct
» reduction clause

For more advanced runtime library clauses
and constructs, visit:
http://www.openmp.org/specifications/

5 UNIVERSITY ‘XI’M £ compuee | calowt
Lia o MANITOBA Summer School, June 25-28, 2018 %

<@ WESTRID Concluding remarks
OpenMP - API:

» Simple parallel programming for shared memory machines.
» Speed up the execution (but not very scalable).
» compiler directives, runtime library, environment variables.

Take a serial code, add the compiler directives and test:

» Define concurrent regions that can run in parallel.

» Add compiler directives and runtime library.

» Control how the variables are shared.

> Avoid the false sharing and race condition by adding synchronization
clauses (chose the right ones).

> Test the program and compare to the serial version.

» Test the scalability of the program as a function of threads.

=% UNIVERSITY 5’,‘,%{ compute | caeul
Lia o MANITOBA Summer School, June 25-28, 2018 PR

A,

~ZFWESTp More readings

» OpenMP: http://www.openmp.org/

» Compute Canada Wiki: https://docs.computecanada.ca/wiki/OpenMP
> Reference cards: http://www.openmp.org/specifications/

» OpenMP Wiki: https://en.wikipedia.org/wiki/OpenMP

» Examples:
http://www.openmp.org/updates/openmp-examples-4-5-published/

» Contact: support@westgid.ca

» WestGrid events: https://www.westgrid.ca/events

‘ o M ‘3:5’;'%’{ oot | Sanadh
L1k o MANITOBA Summer School, June 25-28, 2018 >

l.l

{‘lWESTSRID

Thank you

A
UNIVERSITY BHLS compune | caicus

~ cana

or MANITOBA Summer School, June 25-28, 2018 »

