
Parallel programming in Chapel

ALEX RAZOUMOV
alex.razoumov@westgrid.ca

JUAN ZUNIGA
juan.zuniga@usask.ca

Chapel workshop June 2018 1 / 14

Why another language? http://chapel.cray.com
High-level parallel programming language

I “Python for parallel programming”
I much easier to use and learn than MPI; few lines of Chapel code typically replace tens

of lines of MPI code
I abstractions for data distribution/parallelism, task parallelism
I optimization for data-driven placement of subcomputations
I granular (“multi-resolution”) design: can bring closer to machine level if needed
I everything you can do in MPI (and OpenMP!), you should be able to do in Chapel

Focus on performance
I compiled language; simple Chapel codes perform as well as optimized

C/C++/Fortran code
I reportedly, very complex Chapel codes run at ∼70% performance of a similar

well-tuned MPI code (not bad, but room to improve)

Perfect language for learning parallel programming for beginners

Open-source: can compile on all Unix-like platforms, precompiled for
MacOS (single-locale via Homebrew), Docker image
http://dockr.ly/2vJbi06 (simulates a multi-locale environment)

Fairly small community at the moment: too few people know/use
Chapel ⇐⇒ too few HPC centers install and promote it

Chapel workshop June 2018 2 / 14

http://chapel.cray.com
http://dockr.ly/2vJbi06

Useful links

Slides from https://chapel-lang.org
I Data parallelism
I Task parallelism
I Locality / Affinity Features
I Domain Maps / Distributions

Watch Chapel: Productive, Multiresolution Parallel Programming talk by
Brad Chamberlain

Getting started guide for Python programmers

https://learnxinyminutes.com/docs/chapel

Concise Chapel tutorial by David Bunde

Documentation and examples for various Chapel modules in
$CHPL_HOME/modules/, e.g., standard/ or dists/

https://stackoverflow.com/questions/tagged/chapel

Chapel workshop June 2018 3 / 14

https://chapel-lang.org
http://chapel.cray.com/tutorials/ACCU2017/03-DataPar.pdf
https://chapel-lang.org/tutorials/ACCU2017/04-TaskPar.pdf
https://chapel-lang.org/tutorials/ACCU2017/05-Locality.pdf
https://chapel-lang.org/tutorials/ACCU2017/06-DomainMaps.pdf
https://youtu.be/0DjIdRJIqRY
http://chapel-for-python-programmers.readthedocs.io/basics.html
https://learnxinyminutes.com/docs/chapel
http://faculty.knox.edu/dbunde/teaching/chapel/tutorial-1.9.html
https://stackoverflow.com/questions/tagged/chapel

Our workshop

PART 1: BASIC
LANGUAGE FEATURES

running single-locale
Chapel codes on Cedar

I interactive jobs vs.
batch jobs

quicky on running
Chapel on your laptop

problem description:
heat transfer equation

variables

ranges and arrays

conditionals

for loops

config variables

timing code execution

See lesson notes

PART 2: TASK
PARALLELISM

parallel concepts
I concurrency vs. true

parallelism
I concurrency vs.

task locality

fire-and-forget tasks
I begin statement
I cobegin statement
I coforall loops
I forall loops

task synchronization
I sync statement
I sync variables
I atomic variables

task-parallelizing the
heat transfer solver (if
we have time)

See lesson notes

PART 3: DOMAIN
PARALLELISM

running multi-locale
Chapel codes on Cedar

simple multi-locale
codes

domains and
single-locale data
parallelism

distributed domains

heat transfer solver on
distributed domains

periodic boundary
conditions

writing to files

See lesson notes

Chapel workshop June 2018 4 / 14

http://bit.ly/2CDRuxQ
http://bit.ly/2CDHCUS
http://bit.ly/2CC8MLW

Numerical problem: 2D heat transfer equation
Imagine a metallic plate initially at 25 degrees

Simple 2D heat (diffusion) equation

∂T(x, y, t)
∂t

=
∂2T
∂x2 +

∂2T
∂y2

Discretize the solution T(x, y, t) ≈ T(n)
i,j with i = 1, ..., rows and j = 1, ..., cols

I upper left corner is (1,1), lower right corner is (rows,cols)

Initial condition: T(0)
i,j = 25

Boundary condition: upper side T(n)
0,1..cols ≡ 0, left side T(n)

1..rows,0 ≡ 0,

bottom side T(n)
rows+1,1..cols = 80 · j/cols, right side T(n)

1..rows,cols+1 = 80 · i/rows
(linearly increasing from 0 to 80 degrees)

Discretize the equation with forward Euler time stepping

T(n+1)
i,j − T(n)

i,j

∆t
=

T(n)
i+1,j − 2T(n)

i,j + T(n)
i−1,j

(∆x)2 +
T(n)

i,j+1 − 2T(n)
i,j + T(n)

i,j−1

(∆y)2

Chapel workshop June 2018 5 / 14

Numerical problem: 2D heat transfer equation (cont.)

For simplicity assume ∆x = ∆y = 1

Use ∆t = 1/4

The finite difference equation becomes

T(n+1)
i,j =

1
4

[
T(n)

i+1,j + T(n)
i−1,j + T(n)

i,j+1 + T(n)
i,j−1

]
The objective is to find Ti,j after a certain number of iterations, or when
the system is in steady state

Can increase the number of points in the grid to illustrate the advantage
of parallelism

Chapel workshop June 2018 6 / 14

Serial exercise: using procedures and control flow
Look up Chapel procedures

Write a Chapel code to find the root of the equation
x5 + 8x3 − 2x2 + 5x− 1.2 = 0 using the bisection method in the interval [-1,1]

Calculate the function at the
ends and the midpoint of the
interval

Depending on the signs of the
three computed values, let the
midpoint be either the new
left or the new right end

Repeat until your error is
below ∆x = 10−8

Chapel workshop June 2018 7 / 14

Parallelism vs. TASK LOCALITY

serial local

parallel local parallel distributed

parallelism

locality

Consider a set of tasks
 that we want to run

single core
several cores
 single node

 many cores
multiple nodes

Also DATA LOCALITY:

each of these tasks

could be using variables

 - in local memory or

 - in memory on other

 compute nodes

s
e
ri
a
l

p
a
ra
lle
l

Chapel workshop June 2018 8 / 14

Task- vs. data-parallel

config var numtasks = 2;
coforall taskid in 1..numtasks do

 writeln("this is task ", taskid);

var A, B, C: [1..1000] real;
forall (a,b,c) in zip(A,B,C) do
 c = a + b;

forall loc in Locales do

 on loc do

 writeln("this locale is named ", here.name);

use BlockDist;
const mesh = {1..100,1..100} dmapped

 Block(boundingBox={1..100,1..100});
var T: [mesh] real;
forall (i,j) in T.domain do

 T[i,j] = i + j;

task parallel

data parallel

single locale
shared memory parallelism

multiple locales
distributed memory parallelism

likely shared memory parallelism

Chapel workshop June 2018 9 / 14

Array decomposition

Chapel workshop June 2018 10 / 14

Race condition

lock.add(1)

lock.waitFor(2)

"task 1 is done"

lock.sub(1)

lock.waitFor(0)

lock.add(1)

lock.waitFor(2)

Note: lock.waitFor() is not a collective operation

Chapel workshop June 2018 11 / 14

Data-parallel exercise: compute π with forall loop

Write a parallel Chapel code to compute π by calculating the integral

numerically through summation

π =

∫ 1

0

4 dx
1 + x2

Chapel workshop June 2018 12 / 14

Parallelism cheatsheet
for is a serial loop; a..#n means n iterations, a..b means b-a+1 iterations

forall loop is executed cooperatively by all local cores in parallel, or by remote locales
that own the corresponding indices/elements (subdividing their local iterations among
their local cores); number of threads scales to the number of available cores

coforall loop creates a new task per each iteration (cycling through locales or tasks inside
a locale)

begin { ... } spins statements inside off into a new task

sync { ... } pauses until the children have synced back up

cobegin { line1 line2 line3 } runs each line in a new task; can be grouped with {}
Built-in variables and arrays

I numLocales is the number of locales
I Locales stores an array of compute nodes on which the program is executing
I locale.id is the ID of the current locale
I locale.maxTaskPar is the runtime maximum number of tasks on the current local
I locale.numCores is the locale’s number of compute cores
I locale.name is a locale’s name
I here evaluates to the locale on which the current task is running

Distributions
I BlockDist partitions indices into blocks according to a boundingBox domain and maps each

block onto a separate locale
I CyclicDist maps indices to locales in a round-robin pattern starting at a given index
I BlockCycDist, DimensionalDist2D, PrivateDist, ReplicatedDist, StencilDist,

BlockCycDim, BlockDim, ReplicatedDim

Chapel workshop June 2018 13 / 14

Distributed domains

Chapel workshop June 2018 14 / 14

