
Overview Basics Languages Scheduling Debug/profile Best practices Summary

Introduction to High-Performance Computing

ALEX RAZOUMOV
alex.razoumov@westgrid.ca

ROMAN BARANOWSKI
roman.baranowski@ubc.ca

4 slides and data files at http://bit.ly/introhpc
I the link will download a file introHPC.zip (∼3.7 MB)
I unpack it to find codes/ and slides.pdf

4 remote participants: for live questions https://www.sli.do and enter code M519

WestGrid Summer School UBC, June 2018 1 / 84

http://bit.ly/introhpc
https://www.sli.do

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Workshop outline

To work on the remote cluster today, you will need
(1) Wi-Fi access (Eduroam?)
(2) a Compute Canada account http://bit.ly/2K0ol4S (needs to be approved by the PI)
(3) an SSH client: pre-installed for Linux/Mac, http://mobaxterm.mobatek.net Home Edition for Windows
(4) to be added to the Slurm reservation

Cluster hardware overview

Basic tools for cluster computing
I logging in, transferring files
I software environment, modules
I Linux command line, editing remote files

Programming languages and tools
I overview of languages from HPC standpoint
I parallel programming environments
I compilers
I quick look at OpenMP, MPI, Chapel, make

Working with Slurm scheduler

Debugging and very briefly on profiling

Best practices (common mistakes)

WestGrid Summer School UBC, June 2018 2 / 84

http://bit.ly/2K0ol4S
http://mobaxterm.mobatek.net

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Hardware overview

WestGrid Summer School UBC, June 2018 3 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Compute Canada’s new national systems
CC has been renewing its national infrastructure with several new systems:

Arbutus is an extension to the West Cloud (UVic), in production since Sep. 2016

Cedar (SFU) and Graham (Waterloo) are general-purpose clusters, in production since June 2017

Niagara is a large parallel cluster (Toronto), in production since April 2018

One more general-purpose system in Québec later in 2018

WestGrid Summer School UBC, June 2018 4 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

HPC cluster overview

Mostly off-the-shelf components for
individual nodes, everything
rack-mounted

Typically hundreds of nodes, wired
by fast interconnect

Shared vs. distributed memory

Login vs. compute nodes

Compute nodes: CPU-only, GPU
nodes (accelerators)

Job scheduler

Development/visualization nodes

WestGrid Summer School UBC, June 2018 5 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Cedar cedar.computecanada.ca Graham graham.computecanada.ca
purpose general-purpose cluster for a variety of workloads

specs https://docs.computecanada.ca/wiki/Cedar https://docs.computecanada.ca/wiki/Graham

processor count 27,696 + 30,720 CPUs and 584 GPUs 35,520 CPUs and 320 GPUs

interconnect 100Gbit/s Intel OmniPath, non-blocking to
1024 cores

56-100Gb/s Mellanox InfiniBand,
non-blocking to 1024 cores

128GB base nodes 576 nodes: 32 cores/node 864 nodes: 32 cores/node

256GB large nodes 128 nodes: 32 cores/node 56 nodes: 32 cores/node

0.5TB bigmem500 24 nodes: 32 cores/node 24 nodes: 32 cores/node

1.5TB bigmem1500 24 nodes: 32 cores/node -

3TB bigmem3000 4 nodes: 32 cores/node 3 nodes: 64 cores/node

128GB GPU base 114 nodes: 24-cores/node, 4 NVIDIA P100
Pascal GPUs with 12GB HBM2 memory

160 nodes: 32-cores/node, 2 NVIDIA P100
Pascal GPUs with 12GB HBM2 memory

256GB GPU large 32 nodes: 24-cores/node, 4 NVIDIA P100
Pascal GPUs with 16GB HBM2 memory

-

192 GB Skylake
base nodes (more or

less same as Niagara’s)

640 nodes: 48 cores/node -

å all nodes have on-node SSD storage

å use --constraint=broadwell or --constraint=skylake to specify CPU architecture (usually not needed)

WestGrid Summer School UBC, June 2018 6 / 84

https://docs.computecanada.ca/wiki/Cedar
https://docs.computecanada.ca/wiki/Graham

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Niagara niagara.computecanada.ca

purpose for large parallel jobs, ideally ≥1,000 cores with an allocation

specs https://docs.computecanada.ca/wiki/Niagara and https://docs.scinet.utoronto.ca

processor count 60,000 CPUs and no GPUs

interconnect EDR Infiniband (Dragonfly+), 1:1 to 432 nodes, effectively 2:1 beyond
that

192GB base
nodes

1,500 nodes: 40 cores/node

å no local disk, nodes booting off the network, small RAM filesystem

å all cores are Intel Skylake 6148 Gold (2.4 GHz, AVX512)

å authentication via CC accounts; might need to request access in the early stages, long-term regular access for all CC
account holders

å users with an allocation: job sizes up to 1000 nodes and 24 hours max runtime

å users without an allocation: job sizes up to 20 nodes and 12 hours max runtime

å maximum number of jobs per user: running 50, queued 150

WestGrid Summer School UBC, June 2018 7 / 84

https://docs.computecanada.ca/wiki/Niagara
https://docs.scinet.utoronto.ca

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Accessing resources: RAS vs. RAC

∼20% of compute cycles available via the Rapid Access Service (RAS)
I available to all CC users via default queues
I you can start using it as soon as you have a CC account
I shared pool with resources allocated via “fair share” mechanism
I will be sufficient to meet computing needs of many research groups

∼80% of compute cycles allocated via annual Resource Allocation Competitions
(RAC)

I apply if you need >50 CPU-years or >10 GPU-years
I only PIs can apply, allocation per research group
I announcement in the fall of each year via email to all users
I 2018 RAC: 469 applications, success rate (awarded vs. requested) 55.1% for CPUs, 20.5%

for GPUs, 73% for storage

WestGrid Summer School UBC, June 2018 8 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

File systems
Details at https://docs.computecanada.ca/wiki/Storage_and_file_management

filesystem quotas backed up? purged? performance mounted on
compute nodes?

$HOME 50GB, 5e5 files per user
100GB/user on Niagara

nightly, latest
snapshot

no medium yes

$SCRATCH 20TB, 1e6 files per user
except when full

no yes high for large
files

yes

$PROJECT
(long-term disk storage)

1TB, 5e5 files per user
10TB, 5e6 files per group

nightly no medium yes

/nearline (tape

with disk caching)

5TB per group via RAC no no medium to
low

no

/localscratch none no maybe very high local

Wide range of options from high-speed temporary storage to different kinds of long-term storage

Checking disk usage: run quota command (aliased to diskusage_report)

Requesting more storage: small increases via support@computecanada.ca, large requests via RAC

Coming to Niagara only: $BBUFFER (small burst buffer) for low-latency I/O

WestGrid Summer School UBC, June 2018 9 / 84

https://docs.computecanada.ca/wiki/Storage_and_file_management

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Basic tools for
working with a cluster

WestGrid Summer School UBC, June 2018 10 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Logging into the systems: use your CC account

On Mac or Linux in terminal:

$ ssh yourUsername@cedar.computecanada.ca # Cedar login node
$ ssh yourUsername@graham.computecanada.ca # Graham login node

On Windows many options:
I MobaXTerm https://docs.computecanada.ca/wiki/Connecting_with_MobaXTerm
I PuTTY https://docs.computecanada.ca/wiki/Connecting_with_PuTTY

I bash from the Windows Subsystem for Linux (WSL) – Windows 10 only, need to enable developer mode and
then WSL

SSH key pairs are very handy to avoid typing passwords
I implies secure handling of private keys, non-empty passphrases
I https://docs.computecanada.ca/wiki/SSH_Keys
I https://docs.computecanada.ca/wiki/Using_SSH_keys_in_Linux

I https://docs.computecanada.ca/wiki/Generating_SSH_keys_in_Windows

GUI connection: X11 forwarding (through ssh), VNC, x2go

Client-server workflow in selected applications, both on login and compute nodes

WestGrid Summer School UBC, June 2018 11 / 84

https://docs.computecanada.ca/wiki/Connecting_with_MobaXTerm
https://docs.computecanada.ca/wiki/Connecting_with_PuTTY
https://docs.computecanada.ca/wiki/SSH_Keys
https://docs.computecanada.ca/wiki/Using_SSH_keys_in_Linux
https://docs.computecanada.ca/wiki/Generating_SSH_keys_in_Windows

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Linux command line

All system run Linux (CentOS 7) ⇒ you need to know basic command line
We’ll take a quick look at bash on the cluster in a minute; for more thorough intro:

I attend 3-hour bash session at Software Carpentry
I lots of tutorials online, e.g., review tutorials 1 – 4 at http://bit.ly/2vH3j8v

Much typing can be avoided by using bash aliases, functions, ∼/.bashrc, hitting TAB

FILE COMMANDS
ls directory listing
ls -alF pass command arguments
cd dir change directory to dir
cd change to home
pwd show current directory
mkdir dir create a directory
rm file delete file
rm -r dir delete directory
rm -f file force remove file
rm -rf dir force remove directory
cp file target copy file to target
mv file target rename or move file to target
ln -s file link create symbolic link to file
touch file create or update file

PATHS
relative vs. absolute paths
meaning of ∼ . ..

FILE COMMANDS
command > file redirect command output to file
command � file append command output to file
more file page through contents of file
cat file print all contents of file
head -n file output the first n lines of file
tail -n file output the last n lines of file
tail -f file output the contents of file as it grows

PROCESS MANAGEMENT
top display your currently active processes
ps display all running processes
kill pid kill process ID pid

FILE PERMISSIONS
chmod -R u+rw,g-rwx,o-rwx file set permissions

ENVIRONMENT VARIABLES AND ALIASES
export VAR=’value’ set a variable
echo $VAR print a variable
alias ls=’ls -aFh’ set an alias command

SEARCHING
grep pattern files search for pattern in files
command | grep pattern example of a pipe
find . -name ’*.txt’ | wc -l another pipe

OTHER TOOLS
man command show the manual for command
command --help get quick help on command
df -kh . show disk usage
du -kh . show directory space usage

COMPRESSION AND ARCHIVING
tar cvf file.tar files create a tar file
tar xvf file.tar extract from file.tar
gzip file compress file
gunzip file.gz uncompress file.gz

LOOPS
for i in *tex; do wc -l $i; done loop example

WestGrid Summer School UBC, June 2018 12 / 84

http://bit.ly/2vH3j8v

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Editing remote files from the command line

nano is the easiest option for novice users

emacs -nw is available for power users

Remote graphical emacs not recommended
I you would connect via ssh with an X11 forwarding flag (-X, -Y)

vi and vim are also available (for die-hard fans: basic, difficult to use)

WestGrid Summer School UBC, June 2018 13 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Editing remote files (cont.)

My preferred option: local emacs on my laptop editing remote files via ssh with
emacs’s built-in package tramp

I need to add to your ∼/.emacs

(require ’tramp)
(setq tramp-default-method "ssh")

I only makes sense with a working ssh-key pair

--- on your laptop
$ chmod go-rwx ~/.ssh
$ /bin/rm -rf ~/.ssh/id_rsa*
$ ssh-keygen -b 2048 -t rsa -f ~/.ssh/id_rsa # enter a non-empty passphrase
$ cat ~/.ssh/id_rsa.pub | ssh yourUsername@cedar.computecanada.ca \

’cat >>.ssh/authorized_keys’
--- on the cluster
$ chmod 700 ~/.ssh
$ chmod 640 ~/.ssh/authorized_keys

I your private key is your key to the cluster, so don’t share it!

WestGrid Summer School UBC, June 2018 14 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Bash walk-through on the cluster

(1) Connect to the cluster

(2) Can you tell the difference between local and remote
shells?

(3) Run whoami and hostname

(4) Bring up a manual page on some command, also try
--help flag

(5) Check files in your home directory: are there any hidden
files? lists files by time of last change

(6) Check file permissions

(7) Check out different filesystems – $HOME, $SCRATCH,
$PROJECT – what are their paths?

(8) Play with paths, try to use both absolute and relative
paths, use special characters . .. ∼ /

(9) Create a directory, put a file with some contents into it
(with a text editor), look at this file from the command
line with more and cat

(10) Copy this file into another file, try moving files, delete a
file, delete a directory

(11) Create several files, put them into a gzipped tar archive

(12) Move this archive into another directory, unpack it there

(13) Create a new directory, download
http://hpc-carpentry.github.io/hpc-intro/
files/bash-lesson.tar.gz into it and unpack it
there

(14) How much space do the unpacked files take?

(15) Count the number of lines in all .fastq files

(16) Try to redirect output from the last command into a file

(17) Try pipes: construct a one-line command to display the
name of the longest (by the number of lines) file

(18) Search inside files with grep

(19) Find files with find

(20) Write and run a bash script (need to start with
#!/bin/bash – called shebang) making it executable

(21) Print out some shell variables

(22) Write a quick loop to display each .fastq file’s name,
its number of lines, and then its first two lines,
separating individual files with an empty line

(23) Write a quick loop to remove SRR from each .fastq
file’s name (use ${name:3:14} syntax)

WestGrid Summer School UBC, June 2018 15 / 84

http://hpc-carpentry.github.io/hpc-intro/files/bash-lesson.tar.gz
http://hpc-carpentry.github.io/hpc-intro/files/bash-lesson.tar.gz

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Cluster software environment at a glance

Programming languages: C/C++, Fortran 90, Python, R, Java, Matlab, Chapel –
several different versions and flavours for most of these

CPU parallel development support: MPI, OpenMP, Chapel

GPU parallel development support: CUDA, OpenCL, OpenACC

Job scheduler: Slurm open-source scheduler and resource manager

Popular software: installed by staff, listed at
https://docs.computecanada.ca/wiki/Available_software

I lower-level, not performance sensitive packages installed via Nix package manager
I general packages installed via EasyBuild framework
I everything located under /cvmfs, loaded via modules (next slide)

Other software
I email support@computecanada.ca with your request, or
I can compile in your own space (feel free to ask staff for help)

WestGrid Summer School UBC, June 2018 16 / 84

https://docs.computecanada.ca/wiki/Available_software

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Software modules

Use appropriate modules to load centrally-installed software (might have to select
the right version)

$ module avail <name> # search for a module (if listed)
$ module spider <name> # will give a little bit more info
$ module list # show currently loaded modules
$ module load moduleName
$ module unload moduleName
$ module show moduleName # show commands in the module

All associated prerequisite modules will be automatically loaded as well

Modules must be loaded before a job using them is submitted
I alternatively, can load a module from the job submission script

WestGrid Summer School UBC, June 2018 17 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

File transfer

In Mac/Linux terminal or in Windows MobaXterm or bash/WSL you have two good
options:

(1) use scp to copy individual files and directories
$ scp filename yourUsername@cedar.computecanada.ca:/path/to
$ scp yourUsername@cedar.computecanada.ca:/path/to/filename localPath

(2) use rsync to sync files or directories
$ flags=’-av --progress --delete’
$ rsync $flags localPath/*pattern* yourUsername@cedar.computecanada.ca:/path/to
$ rsync $flags yourUsername@cedar.computecanada.ca:/path/to/*pattern* localPath

Windows PuTTY uses pscp command for secure file transfer

WestGrid Summer School UBC, June 2018 18 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Globus file transfer
Details at https://docs.computecanada.ca/wiki/Globus

The CC Globus Portal https://globus.computecanada.ca is a fast, reliable,
and secure service for big data transfer (log in with your CC account)

Easy-to-use web interface to automate file transfers between any two endpoints
I an endpoint could be a CC system, another supercomputing facility, a campus cluster, a

lab server, a personal laptop (requires Globus Connect Personal app)
I runs in the background: initialize transfer and close the browser, it’ll email status

Uses GridFTP transfer protocol: much better performance than scp, rsync
I achieves better use of bandwidth with multiple simultaneous TCP streams
I some ISPs and Eduroam might not always play well with the protocol (throttling)

Automatically restarts interrupted transfers, retries failures, checks file integrity,
handles recovery from faults

Command-line interface available as well

WestGrid Summer School UBC, June 2018 19 / 84

https://docs.computecanada.ca/wiki/Globus
https://globus.computecanada.ca

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Programming languages
and tools

WestGrid Summer School UBC, June 2018 20 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

High-level overview of programming models

Installed serial compilers and interpreters: C, C++, Fortran, Python, R, Java
For more details see https://docs.computecanada.ca/wiki/Programming_Guide

In HPC speed matters. Not all languages are built equal in terms of performance!

Native loops and arithmetic in Python are 80-200X slower than optimized compiled C/C++/Fortran
I Python compilers and accelerators (Cython, Numba, Nuitka, etc.) try to improve things to some extent
I use precompiled numerical libraries such as numpy and scipy
I call C/C++/Fortran functions from Python

Native R is even slower ... designed for desktop-scale statistical computation and graphics
I very popular in engineering, mathematics, statistics, bioinformatics
I there are some ways to accelerate R to an “acceptable balance” of coding time investment vs. performance

Matlab, Java are also slowish (3-10X compared to optimized compiled C/C++/Fortran)

Later (when submitting serial jobs) we’ll do an exercise to time pi.c vs. pi.py
I you can find both codes in codes/ directory
I make sure to use the same value of n

WestGrid Summer School UBC, June 2018 21 / 84

https://docs.computecanada.ca/wiki/Programming_Guide

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Parallel programming environment

CPU parallel development support: OpenMP (since 1997), MPI (since 1994)
I OpenMP is a language extension for C/C++/Fortran provided by compilers, implements shared-memory

parallel programming
I MPI is a library with implementations for C/C++/Fortran/Python/R/etc, designed for distributed-memory

parallel environments, also works for CPU cores with access to common shared memory
I industry standards for the past 20+ years

Chapel is a open-source parallel programming language
I ease-of-use of Python + performance of a traditional compiled language
I combines shared- and distributed-memory models; data and task parallelism for both
I multi-resolution: high-level parallel abstractions + low-level controls
I in my opinion, by far the best language to learn parallel programming ⇒ we teach it as part of HPC

Carpentry, in summer schools and full-day Chapel workshops
I experimental support for GPUs
I relative newcomer to HPC, unfortunately still rarely used outside its small/passionate community

GPU parallel development support: CUDA, OpenCL, OpenACC

WestGrid Summer School UBC, June 2018 22 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Installed compilers

Intel GNU PGI
intel/2016.4 and openmpi/2.1.1 module load gcc/5.4.0 (∗) module load pgi/17.3 (∗)

loaded by default
C icc mpicc gcc -O2 mpicc pgcc mpicc

Fortran 90 ifort mpifort gfortran -O2 mpifort pgfortran mpifort

C++ icpc mpiCC g++ -O2 mpiCC pgc++ mpiCC

OpenMP flag -qopenmp -fopenmp -mp

(∗) in both cases intel/2016.4 will be unloaded and openmpi/2.1.1 reloaded automatically

mpiXX scripts invoke the right compiler and link your code to the correct MPI library
use mpiXX --show to view the commands they use to compile and link

WestGrid Summer School UBC, June 2018 23 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

OpenMP quick look

OpenMP is a language extension (C, C++, Fortran) for parallel programming in a
SMP environment ⇒ pure OpenMP is always limited to a single node

Programmer uses compiler directives to define “parallel regions” in code which are
executed in separate threads
(1) runs the master thread until the first parallel region is encountered
(2) creates a team of parallel threads
(3) when the team threads complete all commands in the parallel region, they synchronize

and terminate, leaving only the master thread

WestGrid Summer School UBC, June 2018 24 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

MPI quick look

MPI library available for all popular programming languages (C, C++, Fortran,
Python, R, Java, ...)

Each processor runs exactly the same copy of the code

Pseudo-code to exchange variables between two processors (point-to-point
operation), starting with A on proc0 and B on proc1:

rank <- MPI function to find the current task
if rank == 0

send A to 1
receive B from 1

else if rank == 1
receive A from 0
send B to 0

endif

WestGrid Summer School UBC, June 2018 25 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

MPI quick look (cont.)

Point-to-point or collective communications

Each processor runs exactly the same copy of the code

Pseudo-code to calculate a sum using collective reduce operation:

sum = 0, partialSum = 0
np <- MPI function to find the total number of tasks
rank <- MPI function to find the current task
decide if I am MASTER (rank=0) or WORKER (rank=1, ..., np-1)
compute partialSum: 1/np-th of the total work based on rank
if I am MASTER

receive from WORKERS their partialSum
compute sum from all partialSum’s
print sum

else if I am WORKER
send to MASTER partialSum

endif

WestGrid Summer School UBC, June 2018 26 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

MPI quick look (cont.)

More complex MPI
operations
(1) collective

communication
routines

(2) derived data types
(3) communicators

and virtual
topologies

WestGrid Summer School UBC, June 2018 27 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Chapel quick look
High-level abstractions for task and data parallelism

config var numtasks = 2;
coforall taskid in 1..numtasks do

 writeln("this is task ", taskid);

var A, B, C: [1..1000] real;
forall (a,b,c) in zip(A,B,C) do
 c = a + b;

forall loc in Locales do

 on loc do

 writeln("this locale is named ", here.name);

use BlockDist;
const mesh = {1..100,1..100} dmapped

 Block(boundingBox={1..100,1..100});
var T: [mesh] real;
forall (i,j) in T.domain do

 T[i,j] = i + j;

task parallel

data parallel

single locale
shared memory parallelism

multiple locales
distributed memory parallelism

likely shared memory parallelism

Locality and parallelism are orthogonal concepts in Chapel: can even have serial execution on mutiple locales

WestGrid Summer School UBC, June 2018 28 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Build tools: make

Tool for automating builds, typically in a workflow with multiple dependencies

Most frequent usage: source files changed ⇒ recompile parts of the code
I consider a large software project with hundreds of source code files, e.g., Enzo: 426 C++

files, 6 C files, 121 fortran77 files, 10 fortran90 files, 48 header files
I typically work on a small section of the program, e.g., debugging a single function, with

much of the rest of the program unchanged ⇒ would be a waste of time to recompile
everything (with Enzo typically 30-40 mins with heavy optimization) every time you
want to compile/run the code

Another example: updated data files ⇒ redraw the figure ⇒ rebuild the paper

Hard or impossible to keep track of:
I what depends on what
I what’s up-to-date and what isn’t (don’t want to redo everything from scratch every

time)

WestGrid Summer School UBC, June 2018 29 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Build tools: make (cont.)

Idea: use a build manager to automate the process

Need to describe the following in a build file (often called a makefile)
I dependencies for each target, e.g. an executable depends on source code files
I commands used to update targets

The manager program will aid you in your large workflow
I checks whether sources are older than targets
I if not ⇒ rebuild

Most widely used build manager is make
I invented in 1975, evolved into a programming language of its own
I https://docs.computecanada.ca/wiki/Make

I for large projects there are even pre-processor/build tools for make (CMake, etc.)

WestGrid Summer School UBC, June 2018 30 / 84

https://docs.computecanada.ca/wiki/Make

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Make: very simple example with three source files

main.f90
program main

i m p l i c i t none
r e a l ∗8 : : a , b , add , sub
a = 4 .
b = 1 .
print ∗ , add (a , b)
print ∗ , sub (a , b)

end program main

add.f90
function add (a , b)

i m p l i c i t none
r e a l ∗8 , i n t en t (in) : : a , b
r e a l ∗8 : : add
add = a + b
return

end function add

sub.f90
function sub (a , b)

i m p l i c i t none
r e a l ∗8 , i n t en t (in) : : a , b
r e a l ∗8 : : sub
sub = a − b
return

end function sub

WestGrid Summer School UBC, June 2018 31 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Make: very simple example with three source files (cont.)

(1) Compiler stage: each .f90 file is converted into an
object code (.o) which the computer understands
directly
gfortran -c add.f90
gfortran -c sub.f90
gfortran -c main.f90

(2) Linker stage: linking all object codes to optional
libraries to produce an executable program main
gfortran main.o add.o sub.o -o main

main

main.o

main.f90

add.o

add.f90

sub.o

sub.f90

WestGrid Summer School UBC, June 2018 32 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Make: first take (long version)

Start with three files main.f90, add.f90, sub.f90

Create a file called Makefile, put the following in it:
main: main.o add.o sub.o

gfortran main.o add.o sub.o -o main
main.o: main.f90

gfortran -c main.f90
add.o: add.f90

gfortran -c add.f90
sub.o: sub.f90

gfortran -c sub.f90
clean:

/bin/rm -rf *.o main

The format is:
target: prerequisites
<TAB_CHARACTER> rule to make the target

Compile by typing make or make main

WestGrid Summer School UBC, June 2018 33 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Make: first take (shorter version)

Let’s remove redundancy using wildcards (%) and predefined makefile variables

main: main.o add.o sub.o
gfortran $^ -o $@

%.o: %.f90
gfortran -c $^

clean:
@/bin/rm -rf *.o main

Predefined makefile variables:
I $@ is “the target of this rule”
I $ˆ is “all prerequisites of this rule”
I $< is “the first prerequisite of this rule”
I $? is “all out-of-date prerequisites of this rule”

“@” means silent run (without echoing the command)

WestGrid Summer School UBC, June 2018 34 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Make: exercise

Let’s create a makefile for compiling π to replace the following lines:

initial command replacement

gcc -O2 pi.c -o serial make serial
gcc -O2 -fopenmp sharedPi.c -o openmp make openmp
mpicc distributedPi.c -o mpi make mpi

On Cedar no need to load any modules before compiling (defaults to Intel compilers)

WestGrid Summer School UBC, June 2018 35 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Other essential tools

Version control (git or mercurial) – normally taught as a 3-hour Software Carpentry
course

Terminal multiplexer (screen or tmux)
I share a physical terminal between several interactive shells
I access the same interactive shells from many different terminals
I very useful for persistent sessions, e.g., for compiling large codes

VNC and x2go clients for remote interactive GUI work
I on Cedar in $HOME/.vnc/xstartup can switch from twm to mwm/etc. as your default

window manager
I can run VNC server on compute nodes

WestGrid Summer School UBC, June 2018 36 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Python
Details at https://docs.computecanada.ca/wiki/Python

Initial setup:

module avail python # several versions available
module load python/3.5.4
virtualenv bio # install Python tools in your $HOME/bio
source ~/bio/bin/activate
pip install numpy
...

Usual workflow:
source ~/bio/bin/activate # load the environment
python
...
deactivate

WestGrid Summer School UBC, June 2018 37 / 84

https://docs.computecanada.ca/wiki/Python

Overview Basics Languages Scheduling Debug/profile Best practices Summary

R - details at https://docs.computecanada.ca/wiki/R
$ module spider r # several versions available
$ module load r/3.4.3
$ R
> install.packages("sp") # install packages from cran.r-project.org; it’ll suggest

installing into your personal library $HOME/R/
$ R CMD INSTALL -l $HOME/myRLibPath package.tgz # install non-CRAN packages

Running R scripts: Rscript script.R

Installing and running Rmpi: see our documentation
pbdR (Programming with Big Data in R): high-performance, high-level interfaces to
MPI, ZeroMQ, ScaLAPACK, NetCDF4, PAPI, etc. http://r-pbd.org
Launching multiple serial R calculations via array jobs (details in Scheduling)

I inside the job submission script use something like

Rscript script${SLURM_ARRAY_TASK_ID}.R
or

export params=${SLURM_ARRAY_TASK_ID}
Rscript script.R

and then inside script.R:
s <- Sys.getenv(’params’)
filename <- paste(’/path/to/input’, s, ’.csv’, sep=’’)

WestGrid Summer School UBC, June 2018 38 / 84

https://docs.computecanada.ca/wiki/R
http://r-pbd.org

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Scheduling and
job management

figures and some material in this section borrowed from Kamil Marcinkowski

WestGrid Summer School UBC, June 2018 39 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Frequently asked cluster questions

Why does my job take such a long time to start?

Is there anything that can be done to make my job start more quickly?

Why does my job’s start time estimate keep moving into the future?

Cedar’s ongoing scheduler issues http://status.computecanada.ca
I a Slurm bug affects jobs when the scheduling system is highly loaded ⇒ jobs will not run after they get into

Running:Prolog state
I you should resubmit your job at that point
I we are working with the scheduler vendor to fix this bug

WestGrid Summer School UBC, June 2018 40 / 84

http://status.computecanada.ca

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Why job scheduler?

Tens of thousands of CPUs, many thousands of simultaneous jobs ⇒ need an
automated solution to manage a queue of pending jobs, allocate resources to users,
start/stop/monitor jobs ⇒ we use Slurm open-source scheduler/resource manager

I efficiency and utilization: we would like all resources (CPUs, GPUs, memory, disk, bandwidth) to
be all used as much as possible, and minimize gaps in scheduling between jobs

I minimize turnaround for your jobs

Submit jobs to the scheduler when you have a calculation to run; can specify:
I walltime: maximum length of time your job will take to run
I number of CPU cores, perhaps distribution across nodes
I memory (per core or total)
I if applicable, number of GPUs
I Slurm partition, reservation, software licenses, ...

Your job is automatically started by the scheduler when enough resources are
available

I standard output and error go to file(s)

WestGrid Summer School UBC, June 2018 41 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Fairshare mechanism
Allocation based on your previous usage and your “share” of the cluster

Priority: one per research group (not per user!), ranges from 6 (= high, default) to 0 (=
low)

Each group has a share target
I for regular queues: share ∝ the number of group members
I in RAC: share ∝ the awarded allocation (important projects get a larger allocation)

If a research group has used more than its share during a specific interval (typically
7-10 days) ⇒ its priority will go down, and vice versa

I the exact formula for computing priority is quite complex and includes some adjustable
weights and optionally other factors, e.g., how long a job has been sitting in the queue

I no usage during during the current fairshare interval ⇒ recover back to level 6

Higher priority level can be used to create short-term bursts

Reservations (specific nodes) typically only for special events

WestGrid Summer School UBC, June 2018 42 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Job packing: simplified view

Consider a cluster with 4 running jobs and 6 newly submitted jobs

Scheduled jobs are arranged in order of their users’ priority, starting from the top of the
priority list (jobs from users with the highest priority)

Consider 2D view: cores and time

In reality a multi-dimensional rectangle to fit on a cluster partition: add memory (3rd
dimension), perhaps GPUs (4th dimension), and so on, but let’s ignore these for simplicity

WestGrid Summer School UBC, June 2018 43 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Jobs are scheduled in order of their priority. Highest-priority job may not run first!

Backfill: small lower-priority jobs can run on processors reserved for larger
higher-priority jobs (that are still accumulating resources), if they can complete
before the higher-priority job begins

WestGrid Summer School UBC, June 2018 44 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Why does my job’s start time estimate keep moving into the future?

If a running job finishes early, or a waiting job is canceled, or a new higher priority job is
added to the queue ⇒ all waiting jobs are rescheduled from scratch in the next cycle, again
in the order of their priority

This will change the estimated start time, and not always in the obvious direction (notice
what happens to job #2 in the graph below!)

⇒

WestGrid Summer School UBC, June 2018 45 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Job billing: goes into determining your priority

Recall: base nodes have 128GB and 32 cores per node ⇒ effectively 4GB per core

Job billing is by core and memory (via core-equivalents: 4GB = 1 core), whichever is
larger

I this is fair: large-memory jobs use more resources
I a 8GB serial job running for one full day will be billed 48 core-hours

WestGrid Summer School UBC, June 2018 46 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Many serial jobs on a cluster

Each job uses a single CPU: easiest and most efficient to schedule, excellent scaling linear
speedup
Submitting many serial jobs is called “serial farming” (perfect for filling in the parameter
space, running Monte Carlo ensembles, etc.)
In your job script you can ask for a serial job with #SBATCH --ntasks=1 (this is the default
if not specified)

WestGrid Summer School UBC, June 2018 47 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Scheduler: submitting serial jobs

$ icc pi.c -o serial
$ sbatch [other flags] job_serial.sh
$ squeue -u username [-t RUNNING] [-t PENDING] # list all current jobs
$ sacct -j jobID [--format=jobid,maxrss,elapsed] # list resources used by completed job

#!/bin/bash
#SBATCH --time=00:05:00 # walltime in d-hh:mm or hh:mm:ss format
#SBATCH --job-name="quick test"
#SBATCH --mem=100 # 100M
#SBATCH --account=def-razoumov-ws_cpu
#SBATCH --reservation=arazoumov-may28
./serial

--account=... needed only if you have more than one allocation (RAS / RAC / reservations), used
for “billing” purposes (not the same as your cluster account!)

--reservation=... used only for special events

It is good practice to put all flags into a job script (and not the command line)

Could specify number of other flags (more on these later)

WestGrid Summer School UBC, June 2018 48 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Exercises: simple serial jobs

(1) Submit a serial job that:
I runs the hostname command

(2) Monitor your job with squeue -u username, check your email, print output file

(3) How much memory did the job use?

(4) Now try timing pi.c vs. pi.py on a compute node, using either:
I time <command>, or
I Slurm’s walltime reporting

WestGrid Summer School UBC, June 2018 49 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Scheduler: submitting array jobs

Job arrays are a handy tool for submitting many serial jobs that have the same executable and might
differ only by the input they are receiving through a file

Job arrays are preferred as they don’t require as much computation by the scheduling system to
schedule, since they are evaluated as a group instead of individually

In the example below we want to run 30 times the executable “myprogram” that requires an input file;
these files are called input1.dat, input2.dat, ..., input30.dat, respectively

$ sbatch job_array.sh [other flags]

#!/bin/bash
#SBATCH --array=1-30 # 30 jobs
#SBATCH --job-name=myprog # single job name for the array
#SBATCH --time=02:00:00 # maximum walltime per job
#SBATCH --mem=100 # maximum 100M per job
#SBATCH --account=def-razoumov-ws_cpu
#SBATCH --output=myprog%A%a.out # standard output
#SBATCH --error=myprog%A%a.err # standard error
in the previous two lines %A" is replaced by jobID and "%a" with the array index
./myprogram input$SLURM_ARRAY_TASK_ID.dat

WestGrid Summer School UBC, June 2018 50 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Single-node, muti-core job

All threads are part of the same process, share single memory address space
OpenMP is one of the easiest methods of parallel programming
Always limited to a single node
Does not have to occupy an entire node

WestGrid Summer School UBC, June 2018 51 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Scheduler: submitting OpenMP or threaded jobs

$ icc -qopenmp sharedPi.c -o openmp
$ sbatch job_openmp.sh [other flags]
$ squeue -u username [-t RUNNING] [-t PENDING] # list all current jobs
$ sacct -j jobID [--format=jobid,maxrss,elapsed] # list resources used by

your completed job

#!/bin/bash
#SBATCH --cpus-per-task=4 # number of cores
#SBATCH --time=0-00:05 # walltime in d-hh:mm or hh:mm:ss format
#SBATCH --mem=100 # 100M for the whole job (all threads)
#SBATCH --account=def-razoumov-ws_cpu
#SBATCH --reservation=arazoumov-may28
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK # passed to the program
echo running on $SLURM_CPUS_PER_TASK cores
./openmp

Did you get any speedup running this calculation on four cores?

WestGrid Summer School UBC, June 2018 52 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

MPI job

Distributed memory: each process uses a different memory address space
Communication via messages
More difficult to write MPI-parallel code than OpenMP
Can scale to much larger number of processors (clusters are larger than SMP machines)

WestGrid Summer School UBC, June 2018 53 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Scheduler: submitting MPI jobs

$ mpicc distributedPi.c -o mpi
$ sbatch job_mpi.sh [other flags]
$ squeue -u username [-t RUNNING] [-t PENDING] # list all current jobs
$ sacct -j jobID [--format=jobid,maxrss,elapsed] # list resources used by completed job

#!/bin/bash
#SBATCH --ntasks=4 # number of MPI processes
#SBATCH --time=0-00:05 # walltime in d-hh:mm or hh:mm:ss format
#SBATCH --mem-per-cpu=100 # in MB
#SBATCH --account=def-razoumov-ws_cpu
#SBATCH --reservation=arazoumov-may28
srun ./mpi # or mpirun

Did you get any speedup running this calculation on four processors?
What is the code’s parallel efficiency? Why is it not 100%?

WestGrid Summer School UBC, June 2018 54 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Hybrid job

Combining OpenMP and MPI for running on clusters of SMP machines

I inside each node: shared-memory communication without MPI programming/overhead
I scaling to larger resources (CPUs, memory) on the cluster

In practice might be easier to code with MPI only

New advanced languages such as Chapel combine shared- and distributed-memory models

WestGrid Summer School UBC, June 2018 55 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Scheduler: submitting hybrid jobs

#!/bin/bash
#SBATCH --ntasks=4 # number of MPI tasks
#SBATCH --cpus-per-task=12 # number of cores per task
#SBATCH --time=12:00:00 # maximum walltime
#SBATCH --account=def-razoumov-ws_cpu
if [-n "$SLURM_CPUS_PER_TASK"]; then
omp_threads=$SLURM_CPUS_PER_TASK

else
omp_threads=1

fi
export OMP_NUM_THREADS=$omp_threads
srun ./mpi_openmp_program

More fine-grained control with #SBATCH --ntasks-per-node=...

Do not run this script: only an example

WestGrid Summer School UBC, June 2018 56 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Scheduler: submitting GPU jobs

#!/bin/bash
#SBATCH --nodes=3 # number of nodes
#SBATCH --gres=gpu:1 # GPUs per node
#SBATCH --mem=4000M # memory per node
#SBATCH --time=0-05:00 # walltime in d-hh:mm or hh:mm:ss format
#SBATCH --output=%N-%j.out # %N for node name, %j for jobID
#SBATCH --account=def-razoumov-ws_cpu
srun ./gpu_program

Do not run this script: only an example

WestGrid Summer School UBC, June 2018 57 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Scheduler: interactive jobs

$ salloc --time=1:0:0 --ntasks=2 # submit a 2-core interactive job for 1h
$ echo $SLURM_... # can check out Slurm environment variables
$./serial # this would be a waste: we have allocated 2 cores
$ srun ./mpi # run an MPI code, could also use mpirun/mpiexec
$ exit # terminate the job

Should automatically go to one of the Slurm interactive partitions

$ sinfo -a | grep interac

Useful for debugging or for any interactive work, e.g., GUI visualization
I interactive CPU-based ParaView client-server visualization on Cedar and Graham
https://docs.computecanada.ca/wiki/Visualization

I we use salloc in our hands-on Chapel course

Make sure to only run the job on the processors assigned to your job – this will
happen automatically if you use srun, but not if you just ssh from the headnode

WestGrid Summer School UBC, June 2018 58 / 84

https://docs.computecanada.ca/wiki/Visualization

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Exercise: interactive job

Try to print some Slurm environment variables from an interactive job

Run your “pi.c vs. pi.py” timing exercise as an interactive job

WestGrid Summer School UBC, June 2018 59 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Slurm environment variables

Available inside running jobs
You can start an interactive job, type echo $SLURM and then hit Tab to see all
defined variables inside your job
Useful to pass parameters to your program at runtime or to print out job information

Environment variable Description

SLURM_JOB_ID unique slurm jobID

SLURM_NNODES number of nodes allocated to the job

SLURM_NTASKS number of tasks allocated to the job

SLURM_NPROCS number of tasks allocated to the job

SLURM_MEM_PER_CPU memory allocated per CPU

SLURM_JOB_NODELIST list of nodes on which resources are allocated

SLURM_JOB_CPUS_PER_NODE number of CPUs allocated per node

SLURM_JOB_ACCOUNT account under which this job is run

WestGrid Summer School UBC, June 2018 60 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Slurm script flags

Use them inside a job script (with #SBATCH) or in the command line (after sbatch)
We already saw many examples in previous slides
For full list of flags, type man sbatch

Slurm script command Description

#SBATCH --ntasks=X request X tasks; with cpus-per-task=1 (the default) this requests X cores

#SBATCH --nodes=X request a minimum of X nodes

#SBATCH --nodes=X-Y request a minimum of X nodes and a maximum of Y nodes

#SBATCH --cpus-per-task=X request a minimum of X CPUs per task

#SBATCH --tasks-per-node=X request a minimum of X tasks be allocated per node

#SBATCH --mail-type=ALL notify via email about ALL, NONE, BEGIN, END, FAIL, REQUEUE

#SBATCH --mail-user=... set email address

WestGrid Summer School UBC, June 2018 61 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Slurm script flags (cont.)

Slurm script command Description

#SBATCH --output=name%j.out standard output and error log

#SBATCH --error=name.err standard error log

#SBATCH --mem=2000 request 2000 MB of memory in total

#SBATCH --mem-per-cpu=2000 request 2000 MB of memory per CPU

#SBATCH --gres=gpu:1 request 1 GPU per node

#SBATCH --exclusive request node(s) with no other running job(s)

#SBATCH --dependency=after:jobID1 request that the job starts after jobID1 has started

#SBATCH --dependency=afterok:jobID1 request that the job starts after jobID1 has finished successfully

#SBATCH --array=0-4 request job array of 5 jobs with indices 0-4

#SBATCH --array=0-4%2 array of 5 jobs with a maximum of 2 jobs running at the same time

#SBATCH --array=1,3,5,9,51 request job array of 5 jobs with indexes 1, 3, 5, 9, 51

WestGrid Summer School UBC, June 2018 62 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Slurm jobs and memory

It is very important to specify memory correctly!

If you don’t ask for enough, and your job uses more, your job will be killed

If you ask for too much, it will take a much longer time to schedule a job, and you
will be wasting resources

If you ask for more memory than is available on the cluster your job will never run;
the scheduling system will not stop you from submitting such a job or even warn
you

I always ask for slightly less than total memory on a node as some memory is used for the
OS, and your job will not start until enough memory is available

Can use either #SBATCH --mem=4000 or #SBATCH --mem-per-cpu=2000

What’s the best way to find your code’s memory usage?

WestGrid Summer School UBC, June 2018 63 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Slurm jobs and memory (cont.)

Second best way: use Slurm command to estimate your completed code’s memory
usage

$ sacct -j jobID [--format=jobid,maxrss,elapsed]
list resources used by a completed job

Use the measured value with a bit of a cushion, maybe 15-20%

Be aware of the discrete polling nature of Slurm’s measurements
I sampling at equal time intervals might not always catch spikes in memory usage
I sometimes you’ll see that your running process is killed by the Linux kernel (via

kernel’s cgroups https://en.wikipedia.org/wiki/Cgroups) since it has exceeded its
memory limit but Slurm did not poll the process at the right time to see the spike in
usage that caused the kernel to kill the process, and reports lower memory usage

I sometimes sacct output in the memory field will be empty, as Slurm has not had time
to poll the job (job ran too fast)

WestGrid Summer School UBC, June 2018 64 / 84

https://en.wikipedia.org/wiki/Cgroups

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Getting information and other Slurm commands

$ squeue -u username [-t RUNNING] [-t PENDING] # list all current jobs
$ squeue -p partitionName # list all jobs in a partition
$ squeue -P --sort=-p,i --states=PD --format="%.10A %.18a %.12P %.8C %.12m %.15l %.25S"

show all queued (=PD) jobs sorted by their current priority
$ scancel [-t PENDING] [-u username] [jobID] # kill/cancel jobs

$ sinfo # view information about Slurm partitions
$ partition-stats # similar in a tabular format
$ scontrol show partition # similar with more details
$ sinfo --states=idle # show idle node(s) on cluster
$ sinfo -n gra10 -o "%n %c %m" # list node’s name, core count and memory

$ sacct -j jobID --format=jobid,maxrss,elapsed # resources used by a completed job
$ sacct -u username --format=jobid,jobname,avecpu,maxrss,maxvmsize,elapsed

show details of all your jobs
$ sacct -aX -S 2018-04-25 --format=account%20,partition%20,jobid%12,submit%22,\
start%22,end%15,timelimit%15,reqmem,ncpus%8,nnodes%8,state | more

show all jobs (all users) on the system since a specific date

$ scontrol show job jobID # produce a very detailed report for the job
$ sprio [-j jobID1,jobID2] [-u username] # list job priority information

Common job states: R = running, PD = pending, CG = completing right now, F = failed
WestGrid Summer School UBC, June 2018 65 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Slurm partitions

Idea: restrict jobs of specific shapes to node sets
I obvious for large-memory / GPU / interactive jobs

By-node vs. by-core
I full-node (or by-node) jobs can run on most nodes
I partial-node (or by-core) jobs have access to fewer nodes

- by-core jobs can fit into little, sparse places ⇒ too many of them will easily fill the cluster,
leaving no resources for “denser” jobs ⇒ hence separate cluster partitions

Short vs. long jobs
I jobs 3 hours and shorter can run on most nodes
I longer jobs have access to fewer nodes

Backfill jobs can run on most nodes

WestGrid Summer School UBC, June 2018 66 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Why is my job not running?

In no particular order:

(1) Other jobs have greater priority

(2) There is a problem with the job / resources are not available

I resources do not exist on the cluster?
I did not allow for OS memory (whole-node runs)?

(3) The job is blocked

I disk quota / other policy violation?
I dependency not met?

(4) There is a problem with the scheduling system or cluster
I most frequent: someone just submitted 10,000 jobs via a script, then cancelled them, then

resubmitted them, rendering Slurm unresponsive for a while, even if resources are
available for your job right now

WestGrid Summer School UBC, June 2018 67 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Debugging and profiling

WestGrid Summer School UBC, June 2018 68 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Identifying bugs and errors in your code

Methodical process of finding and fixing flaws in software

Typical signs that your program is buggy include:
I it fails to complete (crashes), usually with an error message in the output file

(“Segmentation fault”, “Floating point exception”, etc) or with a numeric job exit code
I it produces incorrect output (NaNs)
I it fails to progress (hangs), often showing ∼ 100% CPU usage

signal name OS signal
#

OS signal
name

description

floating point
exception

8 SIGFPE the program attempted an arithmetic operation with val-
ues that do not make sense (e.g., divide by zero)

segmentation
fault

11 SIGSEGV the program accessed memory incorrectly (e.g., access-
ing an array beyond its declared bounds, using incorrect
pointers

aborted 6 SIGABRT generated by the runtime library of the program or a li-
brary it uses, after having detected a failure condition

WestGrid Summer School UBC, June 2018 69 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Common bugs

Arithmetic: infinities (division by zero), out of range

Memory access: index out of range, uninitialized pointers

Logic: infinite loop, corner cases (sloppy condition evaluation)
I example: try evaluating 0.1 + 0.2 == 0.3 in Python or R

Misuse: wrong initial conditions, variable initialization (forgot to set to zero?),
implicit variable declarations (⇒ wrong type)

Syntax: wrong operator, function arguments (variable number/types must match)

Resource starvation: memory leak

Parallel: race conditions, deadlock, nonmatching send/receive

WestGrid Summer School UBC, June 2018 70 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Debugging

Debugger is a program to manipulate and inspect your program as it is running
I not a magic bullet – you are the real debugger!

Write better code, use existing libraries instead of your own code

Test individual parts of your code

Once you are convinced there is a problem
I try to reproduce the problem in the simplest situation possible
I try to reverse your steps to a working state (version control!) and then make one change at a time
I try smaller problem size
I use compiler flags to turn off floating point exceptions (the code will stop)
I turn on compiler warnings (GNU: -Wall)
I (mostly Fortran) use compiler flags to enable runtime checking for various conditions (array indices within

bounds, uninitialized variables, proper pointer usage)
I ensure that variables are defined with sufficient precision (overflow/underflow)
I use a debugger
I use print statements? ... not a good strategy

WestGrid Summer School UBC, June 2018 71 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Debuggers for compiled languages

Command-line serial debugger gdb – standard on Linux systems

Commercial parallel GUI debuggers: DDT, TotalView
I we’ll likely have DDT on Graham (not yet confirmed)

Prepare your code for debugging
I compile your program with “-g” flag to include a symbol table, if you are going to run it

in a debugger
I disable all processor optimizations — these might produce misleading debugger

behaviour
I turn off floating point masking behaviour for the program to stop when a NaN or an Inf

is computed
- Intel C/C++ compiler: need explicit signal handling in the code

WestGrid Summer School UBC, June 2018 72 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Buggy code example

bugs1.c
#include <stdio.h>
void divide(float e, float d) {

printf("%f\n", e/d);
}
void array(float f[], int index) {

printf("%f\n", f[index]);
}
int main(int argc, char **argv) {

float a = 0., b = 1., c[10];
int i;
for (i = 0; i < 10; i++)
c[i] = (float)i;

divide(b, a);
array(c, 1200);
return(0);

}

bugs2.c (same with floating point exception handling)
#include <fenv.h>
#include <signal.h>
#include <stdio.h>
void divide(float e, float d) {

printf("%f\n", e/d);
}
void array(float f[], int index) {

printf("%f\n", f[index]);
}
void fpehandler(int sig_num) {

signal(SIGFPE, fpehandler);
printf("floating point exception, exiting\n");
abort();

}
int main(int argc, char **argv) {
int feenableexcept();
feenableexcept(FE_ALL_EXCEPT);
signal(SIGFPE, fpehandler);
float a = 0., b = 1., c[10];
int i;
for (i = 0; i < 10; i++)

c[i] = (float)i;
divide(b, a);
array(c, 1200);
return(0);

}

WestGrid Summer School UBC, June 2018 73 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Typical gdb session

$ icc bugs1.c -o bugs
$./bugs
inf
70310426758547368093419569152.000000

$ icc bugs2.c -o bugs
$./bugs
floating point exception, exiting
Aborted

$ icc -g bugs2.c -o bugs
$ gdb bugs
(gdb) r
Starting program: bugs
Program received signal SIGFPE, Arithmetic exception.
0x00000000004006a5 in divide (e=1, d=0) at bugs2.c:5
5 printf("%f\n",e/d);

(gdb) where
#0 0x00000000004006a5 in divide (e=1, d=0) at bugs2.c:5
#1 0x00000000004007d0 in main (argc=1,

argv=0x7fffffffc978) at bugs2.c:23

(gdb) l 5
1 #include <fenv.h>
2 #include <signal.h>
3 #include <stdio.h>
4 void divide(float e, float d) {
5 printf("%f\n",e/d);
6 }
7 void array(float f[], int index) {
8 printf("%f\n",f[index]);
9 }
10 void fpehandler(int sig_num) {

(gdb) p e
$1 = 1

(gdb) p d
$2 = 0

WestGrid Summer School UBC, June 2018 74 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Continue debugging

Resolve the bug, and then repeat

The next bug (index=1200) might or might not produce a segmentation fault (that
memory address is used by something else inside the code at runtime?)

I if it does, gdb will track it
(gdb) r
Starting program: /home/razoumov/introToHPC/scripts/bugs
Program received signal SIGSEGV, Segmentation fault.
0x00000000004005a1 in array (f=0x7fffffffc84c, index=1200000) at bugs1.c:6
6 printf("%f\n", f[index]);

I if it does not, need a more powerful memory debugger (valgrind)

Other gdb commands:
I insert breakpoints at certain lines or at the beginning of certain functions, then run until the next breakpoint
I commands to show and delete breakpoints
I run until the breakpoint
I step one line at a time, step into a function or out of a function
I run help and help className to get more info

WestGrid Summer School UBC, June 2018 75 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Using core files

Often it takes a long time before the program reaches the error condition ⇒ cannot
debug interactively

In this case submit the job (debugging-instrumented “-g” executable) to the
scheduler, tell the OS to produce a core file when it crashes

I need to set up the Linux environment to produce core files (set core limit to be non-zero):
ulimit -c unlimited ← do this on compute node as part of your running job!

(put it into your job script)

A core file contains the state of the program at the time it crashed ⇒ can load this
file into the debugger to inspect the state and determine what caused the problem

Once a core is produced, load it into gdb

$ gdb ./programName core.jobID

WestGrid Summer School UBC, June 2018 76 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Debugging summary

Prepare the code:
I compile with “-g”
I turn off optimization
I turn off floating point masking behaviour for the program to stop when a NaN or an Inf is

computed (Intel C/C++ compiler: need explicit signal handling in the code)

gdb for serial debugging: will show the function and line in which the error occurred,
the reason behind the error, can print variables, step outside the function

I interactive debugging: gdb ./programName

I post-processing core files: gdb ./programName core.jobID

GUI and/or parallel debugging: use a commercial debugger (DDT, TotalView)
I for MPI or threaded codes; can debug individual threads or processes
I again, use “-g” to include a symbol table
I parallel bugs: race conditions, deadlock, nonmatching send/receive

WestGrid Summer School UBC, June 2018 77 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Code profiling

Profiling tools perform analysis of actual program execution providing very
fine-grained information regarding program operation

I number of times a function is called
I amount of time spent in each function ⇒ identify functions that use most CPU time

and try to optimize them

Tools for code profiling
(1) inline timing

B C: time (seconds only), gettimeofday (seconds and microseconds separately)
B Fortran 90: date_and_time (ms granularity)
B MPI library: MPI_Wtime (use MPI_Wtick to check accuracy, usually µs)

(2) gprof (GNU command line serial code profiler)
(3) commercial profilers for parallel MPI codes, e.g., OPT
(4) IPM, open-source profiler for parallel MPI codes, and other tools from HPC centers
(5) Compilers often come with basic profilers too

WestGrid Summer School UBC, June 2018 78 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Code profiling (cont.)

Using a profiler typically involves three steps:

(1) instrumenting the source code to collect data: extra compile flags and/or linking to
special libraries

(2) running the instrumented binary

(3) performing analysis of the collected data after program execution using special GUI
tools

WestGrid Summer School UBC, June 2018 79 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Best practices

WestGrid Summer School UBC, June 2018 80 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Best practices: computing

Production runs: only on compute nodes via the scheduler
I do not run anything intensive on login nodes or directly on compute nodes

Only request resources (memory, running time) needed
I with a bit of a cushion, maybe 115-120% of the measured values
I use Slurm command to estimate your completed code’s memory usage

Test before scaling, especially parallel scaling

For faster turnaround, request whole nodes (--nodes=...) and short runtimes
(--time=...)

I recall: by-node jobs can run on the “entire cluster” partitions, as opposed to smaller
partitions for longer and “by-core” jobs

Do not run unoptimized codes (use compilation flags -O2 or -O3 if needed)

Be smart in your programming language choice, use precompiled libraries

WestGrid Summer School UBC, June 2018 81 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Best practices: file systems

Filesystems in CC are a shared resource and should be used responsibly!

Do not store millions of small files
I organize your code’s output
I use tar or even better dar (http://dar.linux.free.fr, supports indexing, differential

archives, encryption)

Do not store large data as ASCII (anything bigger than a few MB): waste of disk
space and bandwidth

I use a binary format
I use scientific data formats (NetCDF, HDF5, etc.): portability, headers, binary, compression, parallel
I compress your files

Use the right filesystem
Learn and use parallel I/O
If searching inside a file, might want to read it first
Have a backup plan
Regularly clean up your data in $SCRATCH, $PROJECT, possibly archive elsewhere

WestGrid Summer School UBC, June 2018 82 / 84

http://dar.linux.free.fr

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Summary

WestGrid Summer School UBC, June 2018 83 / 84

Overview Basics Languages Scheduling Debug/profile Best practices Summary

Documentation and getting help

Official documentation https://docs.computecanada.ca/wiki

WestGrid training materials
https://westgrid.github.io/trainingMaterials

Upcoming (June 11-14) summer school at UBC http://bit.ly/ubcwg18
I 14 courses including “Next-Gen Sequencing Read Mapping and Visualization” and

“Microbiome data manipulation and visualization in R”
I registration is now open!

Getting started videos http://bit.ly/2sxGO33
Compute Canada YouTube channel http://bit.ly/2ws0JDC
Email support@computecanada.ca (goes to the ticketing system)

I try to include your full name, CC username, institution, the cluster name, copy and
paste as much detail as you can (error messages, jobID, job script, software version)

Please get to know your local support
I difficult problems are best dealt face-to-face
I might be best for new users

WestGrid Summer School UBC, June 2018 84 / 84

https://docs.computecanada.ca/wiki
https://westgrid.github.io/trainingMaterials
http://bit.ly/ubcwg18
http://bit.ly/2sxGO33
http://bit.ly/2ws0JDC

	Overview
	Basics
	Languages
	Scheduling
	Debug/profile
	Best practices
	Summary

