
Education Outreach and Training
Tutorials

Introduction to Short Read Mapping:
The foundation of next generation

sequencing analysis
June 12th (9:00AM-12:00PM PST)

Phillip A Richmond

Copyright Information

The material is open source, and in this
presentation no previous external work was utilized.

Welcome!

● Welcome to the Introduction to Short Read Mapping
● In this tutorial you will learn how to map Illumina short reads against a

reference genome using the Compute Canada High Performance Computing
(HPC) cluster “Cedar”

● If you can, follow along with me. But if I move too fast (and I will for some
people), just listen and take notes.

● This presentation will be recorded and the slides will remain available
indefinitely

Interactive Experience

We hope this is an interactive experience for all of you.

Questions/Problems can be posted to the Sli.do:

 https://www.sli.do

Code: M519

We have a couple TAs to assist in answering questions and solving problems, at
the end of the session I can address unresolved questions

https://www.sli.do

Your own cheat sheet

Copy paste commands from the github gist:

Github Gist
()

Each command is broken down as follows:

What it does (name_of_command)
Basic/advanced usage
template example
Actual Command Line

Speaker Bio

Phillip Richmond
PhD Candidate, Wasserman Lab, BC Children’s Hospital Research
Institute

Bioinformatics Program, University of British Columbia

https://phillip-a-richmond.github.io

Research:Maximizing the Utility of Whole Genome Sequencing in the
Diagnosis of Rare Genetic Disorders

Previous work in Genomics: Genomic Contributions to Ethanol
Sensitivity in Mice, Polyploid Evolution in Yeast, Brewing Yeast
Genomics, Cancer Cell Epigenetics, Addiction Predisposition

Also loves teaching genomics, and my new puppy Sherlock Holmes
(https://sherlockthedoubledoodle.wordpress.com)

https://phillip-a-richmond.github.io
https://sherlockthedoubledoodle.wordpress.com

Session Outline

● Introduction to next generation sequencing data & diverse data types
● Mapping reads to the genome using BWA mem

○ Interactive (salloc)
○ Scheduler (sbatch <jobscript>)

● Problem set 1
● Data visualization
● Problem set 2
● Closing remarks and downstream pipelines

Session Outline

● Introduction to next generation sequencing data & diverse data types
● Mapping reads to the genome using BWA mem

○ Interactive (salloc)
○ Scheduler (sbatch <jobscript>)

● Problem set 1
● Data visualization
● Problem set 2
● Closing remarks and downstream pipelines

Next generation sequencing: Short-read sequencing

Fragments of DNA

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

...

C

Next generation sequencing: Short-read sequencing

Fragments of DNA Sequencing Library
Adapter
Ligation

Sequencing
Reaction

1-Ligate to flowcell 2-Cluster amplify 3-Sequencing by Synthesis
G TT A

...

@Read1
TCTTGCGTACGTCTTCGATCGTA
+
!!@$@##@!%!@#$!!LLBBDKSNK

Convert to
Fastq

Diverse Input Data, Same Output Format
● Different input data types still result in the same output data format
● Examples:

○ DNA-seq, ChIP-seq, RNA-seq, GRO-seq

● For non-DNA assays (e.g. RNA-seq/GRO-seq), they undergo a conversion from
RNA-->cDNA before sequencing

@K00171:617:HMMTNBBXX:1:1101:28686:1648
1:N:0:GACTAGTA
TCTTGCGTACGTCTTCGATCGTA
+
!!@$@##@!%!@#$!!LLBBDKSNK

@Readname:And:Flowcell:Info 1 or 2 for read pair:N:0:Barcode
Sequence
“Plus Sign”
ASCII-Quality Scores

EXAMPLE MEANING

Diverse Input Data, Same Output Format

@K00171:617:HMMTNBBXX:1:1101:28686:1648
1:N:0:GACTAGTA
TCTTGCGTACGTCTTCGATCGTA
+
BBBBCCA?>><>=;:BBBBBBBBB

@Readname:And:Flowcell:Info 1 or 2 for read pair:N:0:Barcode
Sequence
“Plus Sign”
ASCII-Quality Scores

EXAMPLE MEANING

Q
ua

lit
y

sc
or

e
(Q

)

Probability of error (p)

Q = -10 * log10(p)

Reference-based Mapping: DNA-seq Variant Calling

Raw data (not that
useful)

Example: DNA-seq and Variant Calling● Individually, the short sequencing
reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Reference-based Mapping: DNA-seq Variant Calling

Raw data (not that
useful)

Example: DNA-seq and Variant Calling

Aligned against
Reference genome

Map/align reads
against the genome

● Individually, the short sequencing
reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Chromosome 1

Reference-based Mapping: DNA-seq Variant Calling

Raw data (not that
useful)

Example: DNA-seq and Variant Calling

Aligned against
Reference genome

Map/align reads
against the genome

● Individually, the short sequencing
reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Find places
(variants) where
reads differ from
reference

GCATGCCGTACTGCAGT
TGCTGTA

CTGTACTG
GCATGCTGTA

Chromosome1 25 C T

Chromosome 1

Paired-end DNA-sequencing

Most DNA sequencing is now
paired-end

In paired end sequencing, you
sequence two ends of the same
fragment of DNA

This way, when you map back to the
reference genome, you know more info
about how Read1 and Read2 should
map (More on this later)

Piece of DNA,
~500bp total length

Sequence
from each
end, pointing
towards the
middle of the
piece of DNA

Read1 Read2

Other Applications: ChIP-seq
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

T
F

1-Crosslink
DNA:Protein

2-Shear

3-Pull Down
protein using
anti-protein
antibody on a
column, wash
away other DNA

4-Reverse
Crosslink T

F

5-Ligate
sequencing
adapters

6-Sequence
Library

TGCGTA
CGTACTG

GCATGCGTA

Mapping data to a reference: ChIP-seq Peak Calling
● Individually, the short sequencing

reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Mapping data to a reference: ChIP-seq Peak Calling
● Individually, the short sequencing

reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Aligned against
Reference genome

Map/align reads
against the genome

Mapping data to a reference: ChIP-seq Peak Calling
● Individually, the short sequencing

reads do not have much
information

● Collectively, they can represent
something useful

● Analyzing short-read data takes
two common forms:

○ Reference-based mapping
○ Assembly

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Aligned against
Reference genome

Map/align reads
against the genome

Find pileups/peaks of reads

Regions Bound By TF

T
F

Session Outline

● Introduction to next generation sequencing data & diverse data types
● Mapping reads to the genome using BWA mem

○ Interactive (salloc)
○ Scheduler (sbatch <jobscript>)

● Problem set 1
● Data visualization
● Problem set 2
● Closing remarks and downstream pipelines

Let’s get started! Login to Cedar
You should have already attempted this by now, but as a reminder:

1. Open up a terminal (PC: MobaXterm, Putty | Mac/Linux: Terminal)
2. Login to Cedar

Command (login):
$ ssh <username>@cedar.computecanada.ca
$ ssh richmonp@cedar.computecanada.ca

NOTE: Whenever you see me represent something with the <>, I want you to
replace it with what applies to you. Also, whenever there is a “$”, I am showing
you a command. Commands will be highlighted, with the format in yellow, and the
actual example in green

mailto:richmonp@orcinus.westgrid.ca

Orienting yourself to this workshop directory

The workshop directory is located here:
/scratch/richmonp/TRAINING/

Change into that directory:
$ cd /scratch/richmonp/TRAINING/

Important subdirectories:
/scratch/richmonp/TRAINING/Files/SCRIPTS/ -

Has scripts & templates that you can copy/use
/scratch/richmonp/TRAINING/Files/RAW_DATA/ -

Has the raw data that we will be using today for analysis
/scratch/richmonp/TRAINING/Files/PROCESS/ -

If nothing works for you today, these are some processed files that you can look at/visualize
/scratch/richmonp/TRAINING/JUNE2018/ -

This is where your own workshop directory will exist, and you have permission over it

Set up a workshop directory

$ mkdir <directory>
$ mkdir /scratch/richmonp/TRAINING/JUNE2018/RICHMOND/

NOTE: If you need help, you will need to share permissions on your directory:

$ chmod ugo=rwx -R <directory>
$ chmod ugo=rwx -R /scratch/richmonp/TRAINING/JUNE2018/RICHMOND/

For additional information about permissions and other common command-line
functions see me during the problemset.

Enter into an interactive instance: salloc

The salloc command allows you to “log-in” to a specific node. The command is as
follows:

$ salloc <options>
This command will ask for 1 node, 4CPUs, and 2G/CPU:

$ salloc --account=wgssubc-wa_cpu --reservation=wgssubc-wr_cpu --nodes=1
--mem-per-cpu=2048M --cpus-per-task=4

Pipeline Overview

Sample.Reads1.fastq

Sample.Reads2.fastq

genome.fa*

(genome.fa.ann
genome.fa.amb
genome.fa.pac
genome.fa.bwt
genome.fa.sa)

BWA
mem

Raw reads

Genome index
Sample.sam

samtools
view

samtools
sort

samtools
index

Sample.bam

Sample.sorted.bam

Sample.sorted.bam.bai

File format conversion

Read mapping

IGVVisualization

Pipeline Overview

Sample.Reads1.fastq

Sample.Reads2.fastq

genome.fa*

(genome.fa.ann
genome.fa.amb
genome.fa.pac
genome.fa.bwt
genome.fa.sa)

BWA
mem

Raw reads

Genome index
Sample.sam

samtools
view

samtools
sort

samtools
index

Sample.bam

Sample.sorted.bam

Sample.sorted.bam.bai

File format conversion

Read mapping

IGVVisualization

Let’s take a look at our fastq files
$ more /scratch/richmonp/TRAINING/Files/RAW_DATA/Sample1_R1.fastq

Note, that this file has a SRR readnames, since it was downloaded from the SRA:

@SRR098401.47362517/1

The /1 denotes that this is read1 of a paired end dataset. Looking at the first read in the R2 file shows the
pair to this read with /2:

$ more /scratch/richmonp/TRAINING/Files/RAW_DATA/Sample1_R2.fastq

@SRR098401.47362517/2

Copy both these fastq files into your own workshop directory:
$ cp /scratch/richmonp/TRAINING/Files/RAW_DATA/Sample1_*
/scratch/richmonp/TRAINING/JUNE2018/<YourDirectory>

Pipeline Overview

Sample.Reads1.fastq

Sample.Reads2.fastq

genome.fa*

(genome.fa.ann
genome.fa.amb
genome.fa.pac
genome.fa.bwt
genome.fa.sa)

BWA
mem

Raw reads

Genome index
Sample.sam

samtools
view

samtools
sort

samtools
index

Sample.bam

Sample.sorted.bam

Sample.sorted.bam.bai

File format conversion

Read mapping

IGVVisualization

Reference Genome, Fasta file format
Reference genomes are packaged into fasta files.
Format:
>chromosome1_Name OtherChromInfo AccessionInfo Etc.
NNNNNNATTCGTTGATGGATAGCATGATCAGTAGACATGACATGACAGATGAGGGATATGATGACCA
CCACCCAGATTCCCGGCCGGCCGGCCGGCCCGGGCCGGCCGGCCGGGCCCGGCTATATATATATA
CATAG ….
>chromosome2_Name OtherChromInfo AccessionInfo Etc.
NNNNNNNCCCCGGCCGGCCGGCCGGCCCGGGCCGGCCGGCCGGGCCCGGCTATATATATATACAT
AGATGATCAGTAGACATGACATGACAGATGAGGGATATGATGACCACCACCCAGATTGGAGTTGCCA
GAT

We need to “index” this genome in order to map to it. There are many different genome indexing
strategies. For bwa, we use the command bwa index, which creates an FM-Index of the genome.
$ bwa index <in.fasta>
This will generate these files:
genome.fa.amb, genome.fa.ann, genome.fa.bwt, genome.fa.pac, genome.fa.sa

But...luckily we already have pre-built genomes!
Thanks to the team at McGill, who has built the mugqic (no idea what that word is), we have pre-built genomes

They are located here: /cvmfs/ref.mugqic/genomes/species/

Today, we are using Homo_sapiens.GRCh38:
Take a look inside this directory:
$ ls /cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/

There is a fasta file there we can use:
/cvmfs/ref/mugqic/genomes/species/Homo_sapiens.GRCh38/genome/Homo_sapiens.GRCh38.fa
You can take a look at this file:
$ more /cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/Homo_sapiens.GRCh38.fa

And a BWA index, which we refer to by pointing at this file:
/cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/bwa_index/Homo_sapiens.GRCh38.fa

First: Read mapping

Sample.Reads1.fastq

Sample.Reads2.fastq

genome.fa*

(genome.fa.ann
genome.fa.amb
genome.fa.pac
genome.fa.bwt
genome.fa.sa)

BWA
mem

Raw reads

Genome index
Sample.sam

samtools
view

samtools
sort

samtools
index

Sample.bam

Sample.sorted.bam

Sample.sorted.bam.bai

File format conversion

Read mapping

IGVVisualization

Learning the bwa mem command
First we need to load the module that has the bwa command in it
$ module load bwa/0.7.15

Next we will call the bwa mem command to see how it’s used
$ bwa mem

Let’s break down this usage statement:
$ bwa mem [options] <idxbase> <in1.fq> [in2.fq]

[] is an optional argument, <> is required and is asking you to replace what’s inside with the appropriate
value
Example (From your workshop directory):
$ bwa mem
/cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/bwa_index/Homo_sapiens.GRCh38.fa
Sample1_R1.fastq Sample1_R2.fastq > Sample1.sam

The output SAM file

@SQ - Sequence (contig/chromosome) from reference file
@PG - Program information about mapping
@RG - Read group information (we won’t have any here)

Tab delimited, each line is 1 read. Pairs will be next to each other in the file (e.g.
Line1: Read1
Line2: Read2

https://samtools.github.io/hts-specs/SAMv1.pdf

Next: File Format Conversion

Sample.Reads1.fastq

Sample.Reads2.fastq

genome.fa*

(genome.fa.ann
genome.fa.amb
genome.fa.pac
genome.fa.bwt
genome.fa.sa)

BWA
mem

Raw reads

Genome index
Sample.sam

samtools
view

samtools
sort

samtools
index

Sample.bam

Sample.sorted.bam

Sample.sorted.bam.bai

File format conversion

Read mapping

IGVVisualization

Learning the samtools commands

$ module load samtools/1.3.1

We will use 3 samtools operations: view, sort, and index (in that order)

$ samtools view -b <in.sam> -o <out.bam>
$ samtools view -b Sample1.sam -o Sample1.bam

$ samtools sort <in.bam> -o <out.sorted.bam>
$ samtools sort Sample1.bam -o Sample1.sorted.bam

$ samtools index <in.sorted.bam>
$ samtools index Sample1.sorted.bam

Bam file is a binary format of that sam file

We cannot look at these binary files the same way as we look at text files

Downstream applications will almost always ask for a .bam file

Sorting is necessary for downstream applications

Index will be required for IGV

Before we visualize our data, we will create a shell script that can execute all the
commands we just ran

Building Pipeline Shell Scripts

In general, I like to build shell scripts in three steps:

1. Make a basic shell script with the commands, and run it from the command
line while in an salloc instance with: sh <shellscript>
a. Make sure it runs and completes without an error

2. Add a the header to a shell which has directions for the SLURM scheduler,
and submit it to the queue

3. Generalize your shell script with variables to allow for easier re-use on
different samples

Building Pipeline Shell Scripts

In general, I like to build shell scripts in three steps:

1. Make a basic shell script with the commands, and run it from the command
line while in an salloc instance with: sh <shellscript>
a. Make sure it runs and completes without an error

2. Add a the header to a shell which has directions for the SLURM scheduler,
and submit it to the queue

3. Generalize your shell script with variables to allow for easier re-use on
different samples

Edit Pipeline_v1.sh and re-run within salloc instance

Copy the Pipeline_v1.sh script into your workshop directory and edit it

$ cp /scratch/richmonp/TRAINING/Files/SCRIPTS/Pipeline_v1.sh
/scratch/richmonp/TRAINING/JUNE2018/RICHMOND

Change RICHMOND to be your own directory

Then run it with the sh command:

$ sh /scratch/richmonp/TRAINING/JUNE2018/RICHMOND/Pipeline_v1.sh

Once it finishes, we can check our output to know that this script is functional

Building Pipeline Shell Scripts

In general, I like to build shell scripts in three steps:

1. Make a basic shell script with the commands, and run it from the command
line while in an salloc instance with: sh <shellscript>
a. Make sure it runs and completes without an error

2. Add the header to the shell script which has directions for the SLURM
scheduler, and submit it to the queue

3. Generalize your shell script with variables to allow for easier re-use on
different samples

Example Header for SLURM job

#!/bin/bash

#SBATCH --account=wgssubc-wa_cpu --reservation=wgssubc-wr_cpu

Mail Options
#SBATCH --mail-user=youremail@email.com
#SBATCH --mail-type=ALL

CPU Usage
#SBATCH --mem-per-cpu=2048M
#SBATCH --cpus-per-task=4
#SBATCH --time=2-0:00
#SBATCH --nodes=1

Output and Stderr
#SBATCH --output=%x-%j.out
#SBATCH --error=%x-%j.error

Make sure you edit this to be your own email
address

$ cp /scratch/richmonp/TRAINING/Files/SCRIPTS/ExampleHeader.sh
/scratch/richmonp/TRAINING/JUNE2018/<YourDirectory>

This is specific to the workshop, and you need to
use it today

This is where we specify CPU requirements.
More info on this can be found on Cedar
Documentation and from Roman’s Tutorial
yesterday :)

Where our standard output and standard error file
will go

Concatenate ExampleHeader.sh and Pipeline_v1.sh

We can easily add the header to the top of our existing pipeline script using the cat
command (from within your workshop directory):

$ cat ExampleHeader.sh Pipeline_v1.sh > Pipeline_v2.sh

Change the output files to be called Sample1_PipelineV2*

Once we are happy with our script, we will submit it to the queue

Now we can run our job in the queue

Submit job using sbatch

$ sbatch <file.sh>
$ sbatch /scratch/richmonp/TRAINING/JUNE2018/RICHMOND/Pipeline_v2.sh

Check job status using squeue

$ squeue -u <username>
$ squeue -u richmonp

When the job is finished, we can check our output files (.sam, .bam, sorted.bam, .sorted.bam.bai) and our
.out/.error files

Building Pipeline Shell Scripts

In general, I like to build shell scripts in three steps:

1. Make a basic shell script with the commands, and run it from the command
line while in an salloc instance with: sh <shellscript>
a. Make sure it runs and completes without an error

2. Add the header to the shell script which has directions for the SLURM
scheduler, and submit it to the queue

3. Generalize your shell script with variables to allow for easier re-use on
different samples

Pipeline_v3 as an example of using variables in scripts

THREADS=4
SAMPLE_ID=Bart_Simpson
WORKING_DIR=/scratch/richmonp/TRAINING/Files/PROCESS/
FASTQR1=/scratch/richmonp/TRAINING/Files/RAW_DATA/Sample2_R1.fastq
FASTQR2=/scratch/richmonp/TRAINING/Files/RAW_DATA/Sample2_R2.fastq
BWA_INDEX=/cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/bwa_index/Homo_sapiens.GRCh38.fa
GENOME_FASTA=/cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/Homo_sapiens.GRCh38.fa

Here, I am setting variables at the top of the file, and then referring to them within the commands below

This allows for easier re-purposing of scripts.

Now we will take a quick break, then work on the problem set

The problem set will have you map different input data files, which we will be using
for visualization

Included in this problem set is are files for ChIP-seq data :)

Problem Set:

/scratch/richmonp/TRAINING/Files/PROBLEMSET/ProblemSet1.md

Data visualization

Sample.Reads1.fastq

Sample.Reads2.fastq

genome.fa*

(genome.fa.ann
genome.fa.amb
genome.fa.pac
genome.fa.bwt
genome.fa.sa)

BWA
mem

Raw reads

Genome index
Sample.sam

samtools
view

samtools
sort

samtools
index

Sample.bam

Sample.sorted.bam

Sample.sorted.bam.bai

File format conversion

Read mapping

IGVVisualization

Use FileZilla to transfer files onto your own computer

Transfer the .sorted.bam and
.sorted.bam.bai files onto your
local machine.

You can use filezilla, or
command line scp, or another
file transfer protocol/client

FileZilla:
(https://filezilla-project.org/down
load.php?type=client)

https://filezilla-project.org/download.php?type=client
https://filezilla-project.org/download.php?type=client

Open up IGV on your computer, load hg38

If Human hg38 isn’t in your drop down, click on More…,
and then scroll down to find it.

File→ Load from File: Load the .bam we just created

TIP: You can take snapshots
using the Save Image button.

TIP: You only load the
sorted.bam file

In the search box, type: chr19:1,201,956-1,242,206

Search box Zoom tool

Explore some of the BAM files you have generated

Play around in IGV, check out the different settings and options for visualization

Then we will move to the last part of the course, where I show you some additional
pipeline pieces but won’t go into any details

Beyond Mapped Reads

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Aligned against
Reference genome

Map/align reads
against the genome

Find pileups/peaks of reads

Regions Bound By TF

Raw data (not that
useful)

Example: DNA-seq and Variant Calling

Aligned against
Reference genome

Map/align reads
against the genome

Find places
(variants) where
reads differ from
reference

GCATGCCGTACTGCAGT
TGCTGTA

CTGTACTG
GCATGCTGTA

Chromosome 1

Beyond Mapped Reads

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Aligned against
Reference genome

Map/align reads
against the genome

Find pileups/peaks of reads

Regions Bound By TF

Raw data (not that
useful)

Example: DNA-seq and Variant Calling

Aligned against
Reference genome

Map/align reads
against the genome

Find places
(variants) where
reads differ from
reference

GCATGCCGTACTGCAGT
TGCTGTA

CTGTACTG
GCATGCTGTA

Chromosome 1

These are the BAM
Files, which are
input to downstream
programs

Beyond Mapped Reads - DNA variant calling

Raw data (not that
useful)

Example: DNA-seq and Variant Calling

Aligned against
Reference genome

Map/align reads
against the genome

Find places
(variants) where
reads differ from
reference

GCATGCCGTACTGCAGT
TGCTGTA

CTGTACTG
GCATGCTGTA

Chromosome 1

Many tools can be used for variant calling.

We will use a simple variant caller: vcftools

While I don’t have time to go over variant
calling in this session, I have provided you with
a script that can run variant calling on your
input BAM file.

/scratch/richmonp/TRAINING/Files/SCRIPTS/B
am2VCF_BartSimpson.sh

The output of this pipeline is a VCF file, which
contains variants. VCF Files can be loaded and
vizualized in IGV

Beyond Mapped Reads - ChIP-seq Peak Calling

Raw data (not that
useful)

Example: ChIP-seq for a Transcription Factor

Aligned against
Reference genome

Map/align reads
against the genome

Find pileups/peaks of reads

Regions Bound By TF

A few approaches can be used for calling
“peaks” within ChIP-seq data

We will use the MACS2 package, which I have
installed into:
/scratch/richmonp/TRAINING/TOOLS/

While I don’t have time to go over peak calling
in this session, I have provided you with a script
that can run variant calling on your input BAM
file.

/scratch/richmonp/TRAINING/Files/SCRIPTS/M
ACS2_SRR1448786.sh

One of the outputs is a bed file and a bedgraph
file (.bdg) which can be loaded and visualized
in IGV

End of Lecture, what to do next

● Take a quick break
● Ask a question
● Do Problem Set 2
● Go outside and enjoy the weather

● Additional Genomics Resources:
○ https://phillip-a-richmond.github.io/Introduction-to-Genomic-Analysis/

https://phillip-a-richmond.github.io/Introduction-to-Genomic-Analysis/

Acknowledgements

● Phil Richmond (Teacher)
○ PhD Student Wasserman Lab, enjoys teaching

● Assorted TAs
○ Da real MVPs: Oriol, Rashedul, Robin

● WestGrid https://www.westgrid.ca/ (Jana Makar)

https://www.westgrid.ca/

FLASH DEBUGGING
$ samtools sort Sample1.bam -o Sample1.sorted.bam
Crazy characters printing to the screen

$ samtools view -bS Sample1.sam Sample1.bam
Crazy characters printing to the screen

$ samtools index Sample1.bam
[E::hts_idx_push] unsorted positions
samtools index: "Sample1.bam" is corrupted or unsorted

$ bwa mem -t ../GENOME/genome.fa Sample_R1.fastq
Sample_R2.fastq
[E::bwa_idx_load_from_disk] fail to locate the index files

Fix: This sort command doesn’t use a -o
Unless you specify -T and -O as well.
$ samtools sort Sample1.bam Sample1.sorted

Fix: This commands needs a -o for the output
$ samtools view -bS Sample1.sam -o Sample1.bam

Fix: Order matters. Sort before you index
$ samtools index Sample1.sorted.bam

Fix: the -t option requires an integer. Otherwise, all the
other positional arguments are out of place.
$ bwa mem -t 4 ../GENOME/genome.fa Sample_R1.fastq
Sample_R2.fastq

Fix: Make sure you load the .bam file,
The .bai file just needs to be in the same directory
As the .bam file

