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Welcome!

● Welcome to the Introduction to Short Read Mapping
● In this tutorial you will learn how to map Illumina short reads against a 

reference genome using the Compute Canada High Performance Computing 
(HPC) cluster “Cedar”

● If you can, follow along with me. But if I move too fast (and I will for some 
people), just listen and take notes. 

● This presentation will be recorded and the slides will remain available 
indefinitely



Interactive Experience

We hope this is an interactive experience for all of you.  

Questions/Problems can be posted to the Sli.do:

 https://www.sli.do 

Code: M519 

We have a couple TAs to assist in answering questions and solving problems, at 
the end of the session I can address unresolved questions

https://www.sli.do


Your own cheat sheet

Copy paste commands from the github gist:

Github Gist
() 

Each command is broken down as follows:

# What it does (name_of_command)
## Basic/advanced usage
### template example
Actual Command Line 
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Session Outline

● Introduction to next generation sequencing data & diverse data types
● Mapping reads to the genome using BWA mem

○ Interactive (salloc)
○ Scheduler (sbatch <jobscript>)

● Problem set 1
● Data visualization
● Problem set 2
● Closing remarks and downstream pipelines 
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Next generation sequencing: Short-read sequencing
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@Read1
TCTTGCGTACGTCTTCGATCGTA
+
!!@$@##@!%!@#$!!LLBBDKSNK

Convert to 
Fastq



Diverse Input Data, Same Output Format
● Different input data types still result in the same output data format
● Examples:

○ DNA-seq, ChIP-seq, RNA-seq, GRO-seq

● For non-DNA assays (e.g. RNA-seq/GRO-seq), they undergo a conversion from 
RNA-->cDNA before sequencing

@K00171:617:HMMTNBBXX:1:1101:28686:1648  
1:N:0:GACTAGTA
TCTTGCGTACGTCTTCGATCGTA
+
!!@$@##@!%!@#$!!LLBBDKSNK

@Readname:And:Flowcell:Info  1 or 2 for read pair:N:0:Barcode
Sequence
“Plus Sign”
ASCII-Quality Scores

EXAMPLE MEANING



Diverse Input Data, Same Output Format

@K00171:617:HMMTNBBXX:1:1101:28686:1648  
1:N:0:GACTAGTA
TCTTGCGTACGTCTTCGATCGTA
+
BBBBCCA?>><>=;:BBBBBBBBB

@Readname:And:Flowcell:Info  1 or 2 for read pair:N:0:Barcode
Sequence
“Plus Sign”
ASCII-Quality Scores

EXAMPLE MEANING
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Probability of error (p)

Q = -10 * log10(p)



Reference-based Mapping: DNA-seq Variant Calling

Raw data (not that 
useful)

Example: DNA-seq and Variant Calling● Individually, the short sequencing 
reads do not have much 
information

● Collectively, they can represent 
something useful

● Analyzing short-read data takes 
two common forms:

○ Reference-based mapping
○ Assembly
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Reference-based Mapping: DNA-seq Variant Calling

Raw data (not that 
useful)

Example: DNA-seq and Variant Calling

Aligned against
Reference genome

Map/align reads 
against the genome

● Individually, the short sequencing 
reads do not have much 
information

● Collectively, they can represent 
something useful

● Analyzing short-read data takes 
two common forms:

○ Reference-based mapping
○ Assembly

Find places 
(variants) where 
reads differ from 
reference

GCATGCCGTACTGCAGT
TGCTGTA

CTGTACTG
GCATGCTGTA

Chromosome1 25 C T

Chromosome 1



Paired-end DNA-sequencing

Most DNA sequencing is now 
paired-end

In paired end sequencing, you 
sequence two ends of the same 
fragment of DNA

This way, when you map back to the 
reference genome, you know more info 
about how Read1 and Read2 should 
map (More on this later)

Piece of DNA, 
~500bp total length

Sequence 
from each 
end, pointing 
towards the 
middle of the 
piece of DNA

Read1 Read2



Other Applications: ChIP-seq 
Chromatin Immunoprecipitation Sequencing (ChIP-seq) protocol:
Purpose: To find which sequences of DNA a specific protein interacts with, i.e Transcription Factor (TF).

T
F

T
F

T
F

1-Crosslink 
DNA:Protein

2-Shear 

3-Pull Down 
protein using 
anti-protein 
antibody on a 
column, wash 
away other DNA 

4-Reverse 
Crosslink T

F

5-Ligate 
sequencing 
adapters

6-Sequence 
Library

TGCGTA
CGTACTG

GCATGCGTA



Mapping data to a reference: ChIP-seq Peak Calling 
● Individually, the short sequencing 

reads do not have much 
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● Collectively, they can represent 
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two common forms:
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Example: ChIP-seq for a Transcription Factor
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Mapping data to a reference: ChIP-seq Peak Calling 
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Let’s get started!  Login to Cedar 
You should have already attempted this by now, but as a reminder:

1. Open up a terminal (PC: MobaXterm, Putty | Mac/Linux: Terminal)
2. Login to Cedar

Command (login):
$ ssh <username>@cedar.computecanada.ca
$ ssh  richmonp@cedar.computecanada.ca

NOTE: Whenever you see me represent something with the <>, I want you to 
replace it with what applies to you.  Also, whenever there is a “$”, I am showing 
you a command.  Commands will be highlighted, with the format in yellow, and the 
actual example in green

mailto:richmonp@orcinus.westgrid.ca


Orienting yourself to this workshop directory

The workshop directory is located here:
/scratch/richmonp/TRAINING/

Change into that directory:
$ cd /scratch/richmonp/TRAINING/

Important subdirectories:
/scratch/richmonp/TRAINING/Files/SCRIPTS/ - 

Has scripts & templates that you can copy/use
/scratch/richmonp/TRAINING/Files/RAW_DATA/ - 

Has the raw data that we will be using today for analysis
/scratch/richmonp/TRAINING/Files/PROCESS/ -

If nothing works for you today, these are some processed files that you can look at/visualize
/scratch/richmonp/TRAINING/JUNE2018/ -

This is where your own workshop directory will exist, and you have permission over it



Set up a workshop directory

$ mkdir <directory>
$ mkdir /scratch/richmonp/TRAINING/JUNE2018/RICHMOND/

NOTE: If you need help, you will need to share permissions on your directory:

$ chmod ugo=rwx -R <directory>
$ chmod ugo=rwx -R /scratch/richmonp/TRAINING/JUNE2018/RICHMOND/

For additional information about permissions and other common command-line 
functions see me during the problemset. 



Enter into an interactive instance: salloc

The salloc command allows you to “log-in” to a specific node. The command is as 
follows:

$ salloc <options>
This command will ask for 1 node, 4CPUs, and 2G/CPU:

$ salloc --account=wgssubc-wa_cpu --reservation=wgssubc-wr_cpu --nodes=1 
--mem-per-cpu=2048M --cpus-per-task=4
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Let’s take a look at our fastq files
$ more /scratch/richmonp/TRAINING/Files/RAW_DATA/Sample1_R1.fastq

Note, that this file has a SRR readnames, since it was downloaded from the SRA:

@SRR098401.47362517/1

The /1 denotes that this is read1 of a paired end dataset. Looking at the first read in the R2 file shows the 
pair to this read with /2:

$ more /scratch/richmonp/TRAINING/Files/RAW_DATA/Sample1_R2.fastq

@SRR098401.47362517/2

Copy both these fastq files into your own workshop directory:
$ cp /scratch/richmonp/TRAINING/Files/RAW_DATA/Sample1_*  
/scratch/richmonp/TRAINING/JUNE2018/<YourDirectory>
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Reference Genome, Fasta file format
Reference genomes are packaged into fasta files.
Format: 
>chromosome1_Name OtherChromInfo AccessionInfo Etc.
NNNNNNATTCGTTGATGGATAGCATGATCAGTAGACATGACATGACAGATGAGGGATATGATGACCA
CCACCCAGATTCCCGGCCGGCCGGCCGGCCCGGGCCGGCCGGCCGGGCCCGGCTATATATATATA
CATAG ….
>chromosome2_Name OtherChromInfo AccessionInfo Etc.
NNNNNNNCCCCGGCCGGCCGGCCGGCCCGGGCCGGCCGGCCGGGCCCGGCTATATATATATACAT
AGATGATCAGTAGACATGACATGACAGATGAGGGATATGATGACCACCACCCAGATTGGAGTTGCCA
GAT

We need to “index” this genome in order to map to it.  There are many different genome indexing 
strategies.  For bwa, we use the command bwa index, which creates an FM-Index of the genome.
$ bwa index <in.fasta>
This will generate these files: 
genome.fa.amb, genome.fa.ann, genome.fa.bwt, genome.fa.pac, genome.fa.sa



But...luckily we already have pre-built genomes!
Thanks to the team at McGill, who has built the mugqic (no idea what that word is), we have pre-built genomes

They are located here: /cvmfs/ref.mugqic/genomes/species/

Today, we are using Homo_sapiens.GRCh38:
Take a look inside this directory: 
$ ls /cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/

There is a fasta file there we can use:
/cvmfs/ref/mugqic/genomes/species/Homo_sapiens.GRCh38/genome/Homo_sapiens.GRCh38.fa
You can take a look at this file:
$ more /cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/Homo_sapiens.GRCh38.fa

And a BWA index, which we refer to by pointing at this file:
/cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/bwa_index/Homo_sapiens.GRCh38.fa



First: Read mapping
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Learning the bwa mem command
First we need to load the module that has the bwa command in it
$ module load bwa/0.7.15

Next we will call the bwa mem command to see how it’s used
$ bwa mem

Let’s break down this usage statement:
$ bwa mem [options]  <idxbase>  <in1.fq> [in2.fq]

[ ] is an optional argument, <> is required and is asking you to replace what’s inside with the appropriate 
value
Example (From your workshop  directory):
$ bwa  mem  
/cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/bwa_index/Homo_sapiens.GRCh38.fa  
Sample1_R1.fastq  Sample1_R2.fastq  > Sample1.sam



The output SAM file

@SQ - Sequence (contig/chromosome) from reference file
@PG - Program information about mapping
@RG - Read group information (we won’t have any here)

Tab delimited, each line is 1 read.  Pairs will be next to each other in the file (e.g. 
Line1: Read1
Line2: Read2

https://samtools.github.io/hts-specs/SAMv1.pdf



Next: File Format Conversion
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Learning the samtools commands

$ module load samtools/1.3.1

We will use 3 samtools operations: view, sort, and index (in that order)

$ samtools   view  -b  <in.sam>   -o  <out.bam>
$ samtools   view  -b  Sample1.sam   -o  Sample1.bam

$ samtools   sort   <in.bam>  -o <out.sorted.bam>
$ samtools   sort   Sample1.bam  -o  Sample1.sorted.bam

$ samtools   index  <in.sorted.bam>  
$ samtools   index   Sample1.sorted.bam 



Bam file is a binary format of that sam file

We cannot look at these binary files the same way as we look at text files

Downstream applications will almost always ask for a .bam file

Sorting is necessary for downstream applications

Index will be required for IGV

Before we visualize our data, we will create a shell script that can execute all the 
commands we just ran



Building Pipeline Shell Scripts

In general, I like to build shell scripts in three steps:

1. Make a basic shell script with the commands, and run it from the command 
line while in an salloc instance with: sh <shellscript>
a. Make sure it runs and completes without an error

2. Add a the header to a shell which has directions for the SLURM scheduler, 
and submit it to the queue

3. Generalize your shell script with variables to allow for easier re-use on 
different samples
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Edit Pipeline_v1.sh and re-run within salloc instance 

Copy the Pipeline_v1.sh script into your workshop directory and edit it

$ cp /scratch/richmonp/TRAINING/Files/SCRIPTS/Pipeline_v1.sh 
/scratch/richmonp/TRAINING/JUNE2018/RICHMOND

Change RICHMOND to be your own directory

Then run it with the sh command:

$ sh /scratch/richmonp/TRAINING/JUNE2018/RICHMOND/Pipeline_v1.sh

Once it finishes, we can check our output to know that this script is functional 



Building Pipeline Shell Scripts

In general, I like to build shell scripts in three steps:

1. Make a basic shell script with the commands, and run it from the command 
line while in an salloc instance with: sh <shellscript>
a. Make sure it runs and completes without an error

2. Add the header to the shell script which has directions for the SLURM 
scheduler, and submit it to the queue

3. Generalize your shell script with variables to allow for easier re-use on 
different samples



Example Header for SLURM job

#!/bin/bash

#SBATCH --account=wgssubc-wa_cpu --reservation=wgssubc-wr_cpu

## Mail Options
#SBATCH --mail-user=youremail@email.com
#SBATCH --mail-type=ALL

## CPU Usage
#SBATCH --mem-per-cpu=2048M
#SBATCH --cpus-per-task=4
#SBATCH --time=2-0:00
#SBATCH --nodes=1

## Output and Stderr
#SBATCH --output=%x-%j.out
#SBATCH --error=%x-%j.error

Make sure you edit this to be your own email 
address 

$ cp /scratch/richmonp/TRAINING/Files/SCRIPTS/ExampleHeader.sh 
/scratch/richmonp/TRAINING/JUNE2018/<YourDirectory>

This is specific to the workshop, and you need to 
use it today

This is where we specify CPU requirements. 
More info on this can be found on Cedar 
Documentation and from Roman’s Tutorial 
yesterday :)

Where our standard output and standard error file 
will go



Concatenate ExampleHeader.sh and Pipeline_v1.sh

We can easily add the header to the top of our existing pipeline script using the cat 
command (from within your workshop directory):

$ cat   ExampleHeader.sh   Pipeline_v1.sh   >   Pipeline_v2.sh

Change the output files to be called Sample1_PipelineV2*

Once we are happy with our script, we will submit it to the queue



Now we can run our job in the queue

Submit job using sbatch

$ sbatch  <file.sh>
$ sbatch /scratch/richmonp/TRAINING/JUNE2018/RICHMOND/Pipeline_v2.sh

Check job status using squeue

$  squeue  -u <username>
$  squeue  -u richmonp

When the job is finished, we can check our output files (.sam, .bam, sorted.bam, .sorted.bam.bai) and our 
.out/.error files



Building Pipeline Shell Scripts

In general, I like to build shell scripts in three steps:

1. Make a basic shell script with the commands, and run it from the command 
line while in an salloc instance with: sh <shellscript>
a. Make sure it runs and completes without an error

2. Add the header to the shell script which has directions for the SLURM 
scheduler, and submit it to the queue

3. Generalize your shell script with variables to allow for easier re-use on 
different samples



Pipeline_v3 as an example of using variables in scripts

THREADS=4
SAMPLE_ID=Bart_Simpson
WORKING_DIR=/scratch/richmonp/TRAINING/Files/PROCESS/
FASTQR1=/scratch/richmonp/TRAINING/Files/RAW_DATA/Sample2_R1.fastq
FASTQR2=/scratch/richmonp/TRAINING/Files/RAW_DATA/Sample2_R2.fastq
BWA_INDEX=/cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/bwa_index/Homo_sapiens.GRCh38.fa
GENOME_FASTA=/cvmfs/ref.mugqic/genomes/species/Homo_sapiens.GRCh38/genome/Homo_sapiens.GRCh38.fa

Here, I am setting variables at the top of the file, and then referring to them within the commands below

This allows for easier re-purposing of scripts.



Now we will take a quick break, then work on the problem set

The problem set will have you map different input data files, which we will be using 
for visualization

Included in this problem set is are files for ChIP-seq data :)

Problem Set:

/scratch/richmonp/TRAINING/Files/PROBLEMSET/ProblemSet1.md
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Use FileZilla to transfer files onto your own computer

Transfer the .sorted.bam and 
.sorted.bam.bai files onto your 
local machine.

You can use filezilla, or 
command line scp, or another 
file transfer protocol/client

FileZilla: 
(https://filezilla-project.org/down
load.php?type=client)

https://filezilla-project.org/download.php?type=client
https://filezilla-project.org/download.php?type=client


Open up IGV on your computer, load hg38

If Human hg38 isn’t in your drop down, click on More…, 
and then scroll down to find it.



File→ Load from File: Load the .bam we just created

TIP: You can take snapshots 
using the Save Image button.

TIP: You only load the 
sorted.bam file



In the search box, type: chr19:1,201,956-1,242,206

Search box Zoom tool



Explore some of the BAM files you have generated

Play around in IGV, check out the different settings and options for visualization

Then we will move to the last part of the course, where I show you some additional 
pipeline pieces but won’t go into any details
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Files, which are 
input to downstream 
programs



Beyond Mapped Reads - DNA variant calling

Raw data (not that 
useful)

Example: DNA-seq and Variant Calling

Aligned against
Reference genome

Map/align reads 
against the genome

Find places 
(variants) where 
reads differ from 
reference

GCATGCCGTACTGCAGT
TGCTGTA

CTGTACTG
GCATGCTGTA

Chromosome 1

Many tools can be used for variant calling.

We will use a simple variant caller: vcftools

While I don’t have time to go over variant 
calling in this session, I have provided you with 
a script that can run variant calling on your 
input BAM file.

/scratch/richmonp/TRAINING/Files/SCRIPTS/B
am2VCF_BartSimpson.sh

The output of this pipeline is a VCF file, which 
contains variants. VCF Files can be loaded and 
vizualized in IGV



Beyond Mapped Reads - ChIP-seq Peak Calling

Raw data (not that 
useful)

Example: ChIP-seq for a Transcription Factor

Aligned against
Reference genome

Map/align reads 
against the genome

Find pileups/peaks of reads

Regions Bound By TF

A few approaches can be used for calling 
“peaks” within ChIP-seq data

We will use the MACS2 package, which I have 
installed into: 
/scratch/richmonp/TRAINING/TOOLS/

While I don’t have time to go over peak calling 
in this session, I have provided you with a script 
that can run variant calling on your input BAM 
file.

/scratch/richmonp/TRAINING/Files/SCRIPTS/M
ACS2_SRR1448786.sh

One of the outputs is a bed file and a bedgraph 
file (.bdg) which can be loaded and visualized 
in IGV



End of Lecture, what to do next

● Take a quick break
● Ask a question
● Do Problem Set 2
● Go outside and enjoy the weather

● Additional Genomics Resources:
○ https://phillip-a-richmond.github.io/Introduction-to-Genomic-Analysis/ 

https://phillip-a-richmond.github.io/Introduction-to-Genomic-Analysis/
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FLASH DEBUGGING
$ samtools sort Sample1.bam -o Sample1.sorted.bam
Crazy characters printing to the screen

$ samtools view -bS Sample1.sam Sample1.bam
Crazy characters printing to the screen

$ samtools index Sample1.bam
[E::hts_idx_push] unsorted positions
samtools index: "Sample1.bam" is corrupted or unsorted

$ bwa mem -t ../GENOME/genome.fa Sample_R1.fastq 
Sample_R2.fastq 
[E::bwa_idx_load_from_disk] fail to locate the index files

Fix: This sort command doesn’t use a -o
Unless you specify -T and -O as well.
$ samtools sort Sample1.bam Sample1.sorted

Fix: This commands needs a -o for the output  
$ samtools view -bS Sample1.sam -o Sample1.bam

Fix: Order matters.  Sort before you index
$ samtools index Sample1.sorted.bam

Fix: the -t option requires an integer.  Otherwise, all the 
other positional arguments are out of place.
$ bwa mem -t 4 ../GENOME/genome.fa Sample_R1.fastq 
Sample_R2.fastq

Fix: Make sure you load the .bam file, 
The .bai file just needs to be in the same directory
As  the .bam file


