
DATABASES

Introduction to databases on Cedar

By Wolfgang Richter E-mail: wolfgang@sfu.ca
and Ata Roudgar E-mail: aroudgar@sfu.ca

Database administrators/analysts for Compute Canada and SFU

mailto:wolfgang@sfu.ca
mailto:aroudgar@sfu.ca

Workshop topics to be covered

▪ Short introduction to SQL

▪ Overview of the two database servers on Cedar

▪ Shallow dive into MySQL on Cedar

▪ Deeper dive into PostgreSQL on Cedar

▪ For copy of these slides:

https://westgrid.github.io/ubcSummerSchool2019/4-materials.html

Short Introduction to SQL

▪ Why databases?

▪ Frontends

▪ Basic commands

Short Introduction to SQL

Why databases?

▪ From Wikipedia: A database management system (DBMS) is a computer program (or
more typically, a suite of them) designed to manage a database, a large set of
structured data, and run operations on the data requested by numerous users.

▪ From Wikipedia: A database is an organized collection of data. A relational
database, more restrictively, is a collection of schemas, tables, queries,
reports, views, and other elements.

▪ For researchers, they can use a DBMS such as MySQL or Postgres (aka PostgreSQL)
to set up their own databases, upload data to them, and issue queries against the
data to extract a subset for insight or further processing.

https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/View_(SQL)

Short Introduction to SQL

Frontends available on cedar.computecanada.ca

▪ mysql
▪ A utility program to connect to the Cedar MySQL server.

▪ Can be used to execute SQL commands interactively or in batch.

▪ psql
▪ A utility program to connect to the Cedar Postgres server.

▪ Can be used to execute SQL commands interactively or in batch.

▪ Scripting/programming languages
▪ Examples: Python, C++, Perl

▪ Write a script to connect to the database server, issue SQL commands, return results, work with the
results, etc.

Short Introduction to SQL

Basic commands - Exercise

Point your browser at w3schools.com/sql

Lets you learn and try out basic SQL commands that is used in the major database
systems such as MySQL, and Postgres.

▪ Click on a SQL topic or command in the left column.

▪ Get an explanation along with examples of the command and an opportunity to try
out variations of the command. If the SQL command varies between different types
of DBMS’s, it will show you the differences.

https://www.w3schools.com/sql

Short Introduction to SQL

Basic commands - Exercise

w3schools.com/sql -- click on “SQL Intro”

▪ What is SQL?

▪ SQL stands for Structured Query Language

▪ SQL lets you access and manipulate databases

▪ SQL became a standard of the American National Standards Institute (ANSI) in 1986, and
of the International Organization for Standardization (ISO) in 1987

▪ SQL is a Standard - BUT....

▪ Although SQL is an ANSI/ISO standard, there are different versions of the SQL language.

▪ However, to be compliant with the ANSI standard, they all support at least the major
commands (such as SELECT, UPDATE, DELETE, INSERT, WHERE) in a similar manner.

▪ Note: Most of the SQL database programs also have their own proprietary extensions in
addition to the SQL standard!

https://www.w3schools.com/sql

Short Introduction to SQL

Basic commands – Exercise

▪ What Can SQL do?

▪ SQL can execute queries against a database

▪ SQL can retrieve data from a database

▪ SQL can insert records in a database

▪ SQL can update records in a database

▪ SQL can delete records from a database

▪ SQL can create new databases

▪ SQL can create new tables in a database

▪ SQL can create stored procedures in a database

▪ SQL can create views in a database

▪ SQL can set permissions on tables, procedures, and views

Short Introduction to SQL

Basic SQL commands - Exercise

▪ Click on each of these items in the left column to get a feel for basic SQL
operations (w3schools.com/sql):

▪ SQL Create Table – to create a new table

▪ SQL Insert Into – to insert rows into a table

▪ SQL Select – to search a table

▪ SQL Where – to include a condition in a search

▪ SQL Order By – to order the results of a search

▪ SQL Delete – to delete rows from a table

▪ SQL Update – to update rows in a table

https://www.w3schools.com/sql

Overview of the two database servers on Cedar

Database Server Performance features

Each of our database servers is configured for high performance:

▪ Database server disk is SSD (solid state device) which makes for high performance
I/O .

▪ Several gigs of RAM for the query cache means most data is fetched from high
speed RAM in a query rather than from disk.

▪ Maintenance jobs run on the database servers to do nightly backups on all the
databases and monitor the health of the system.

Overview of the two database servers on Cedar

Postgres – cedar-pgsql-vm

▪ Ref:
CC database servers: docs.computecanada.ca/wiki/Database_servers
Navigate to the Cedar PostgreSQL Server section

▪ Need to be connected via SSH to a Cedar node such as cedar.computecanada.ca (the
head node) or a Cedar compute node to be able to access this server.

▪ Description: General purpose server for the researcher wanting to set up SQL tables and
issue SQL commands against them.

▪ Server full name: cedar-pgsql-vm.int.cedar.computecanada.ca
Short name: cedar-pgysql-vm (can be used instead usually)

▪ Version: PostgreSQL version 10.1. PostGIS version 2.4 extension available for your
database upon request.

▪ Documentation: https://www.postgresql.org and
https://postgis.net/documentation (PostGIS documentation)

https://docs.computecanada.ca/wiki/Database_servers
https://www.postgresql.org/
https://postgis.net/documentation

Overview of the two database servers on Cedar

MySQL – cedar-mysql-vm

▪ Ref:
CC database servers: docs.computecanada.ca/wiki/Database_servers
Navigate to the Cedar MySQL Server section.

MySQL (MariaDB version) Knowledge Base: http://www.mariadb.com Click on
“Knowledge Base” link on the page.

▪ Need to be connected via SSH to a Cedar node such as cedar.computecanada.ca to be
able to access this server.

▪ Description: General purpose server for the researcher wanting to set up SQL tables and
issue SQL commands against them.

▪ Server full name: cedar-mysql-vm.int.cedar.computecanada.ca
Short name: cedar-mysql-vm (can be used instead usually)

▪ Version: MariaDB version 10.2 Community Edition

▪ Documentation: http://www.mariadb.com click on “Knowledge Base”.

https://docs.computecanada.ca/wiki/Database_servers
http://www.mariadb.com/
http://www.mariadb.com/

Shallow dive into MySQL on Cedar - Overview

Your MySQL account and database

▪ To be able to use the MySQL server, a MySQL id has to be set up for you on the cedar-
mysql-vm server.

▪ The MySQL id will match your Compute Canada id but have its own password.

▪ The MySQL id will have privileges that allow you to create and administer your own
MySQL databases.

▪ To request access to the Cedar MySQL server, send a request to
support@computecanada.ca with the following information:

▪ Your Compute Canada username

▪ Amount of database space needed for your project

▪ A special configuration file .my.cnf for your access will be set up under your home
directory owned by root and readable only to you. For example, it contains your MySQL
password so you don’t have to supply it when connecting to your id.

mailto:support@computecanada.ca

Shallow dive into MySQL on Cedar - Overview

MySQL (MariaDB flavor) Knowledge Base:

▪ Point browser at: http://www.mariadb.com
and click on “Knowledge Base” link on the page.

Some relative recent new features offered in the MariaDB flavour of MySQL:

▪ New JSON functions available that allow you to work with data in the JSON format.

▪ Materialized views. Flexviews is a materialized views implementation for MariaDB.

A materialized view is similar to regular view, except that the results are stored into
an actual database table, not a virtual one. The result set is effectively cached for a
period of time. When the underlying data changes the view becomes stale. Because
of this, materialized views must be frequently "refreshed" to bring them up-to-date.

http://www.mariadb.com/

Deeper dive into PostgreSQL on Cedar - Preparation

Your Postgres account and database

▪ To be able to use the Postgres server, a Postgres id and database has to be set up
for you on the cedar-pgsql-vm server.

▪ The Postgres id will match your Compute Canada id and when used from a node on
Cedar does not require that you supply a password. The Database name will contain
your id in the name followed by “_db” (e.g. mary_db) and be exclusively available to
you to administer.

▪ If you are signed up for this course, we should have already set up an id and
database for you under your guest account or CC account. Otherwise we will try to
set it up on the fly so you can do the workshop now.

Deeper dive into PostgreSQL on Cedar - Preparation

Postgres Knowledge Base:

▪ Point browser at: https://www.postgresql.org/docs
and click on the “10” link under the “ONLINE MANUALS” heading.

Some recent new features offered by our version of Postgres over older versions

▪ Declarative table partitioning. (Table partitioning means internally the table can be
broken into pieces. Declarative means you can tell it how to split up the pieces).

▪ Query parallelism. (A query internally may be broken into parts that can run in
parallel to give faster results)

▪ Significant general performance improvements.

▪ Stronger password authentication based on SCRAM-SHA-256.

Deeper dive into PostgreSQL on Cedar - Preparation

Exercise - Set up your Postgres environment under your Cedar home directory

▪ Use an ssh client (such as Putty in Windows) to connect to your Compute Canada id
on cedar.computecanada.ca .

▪ You will be using the “psql” client tool but the default version is old. You will want to
upload a more recent one available. Issue the following commands:

$ psql –-version
$ module load postgresql
$ psql –-version

To avoid having to type these commands each time you login to use Postgres, insert
the following command into your Bash init file:

$ cd
$ vi .bashrc
…
module load postgresql
…

Deeper dive into PostgreSQL on Cedar - Preparation

▪ To avoid having to supply parameters to the “psql” client, issue commands like this:

$ export PGHOST=cedar-pgsql-vm.int.cedar.computecanada.ca

$ export PGDATABASE=[user]_db

#-- Also insert these into your Bash init file:

$ vi .bashrc

…

export PGHOST=cedar-pgsql-vm.int.cedar.computecanada.ca

export PGDATABASE=[user]_db

…

Deeper dive into PostgreSQL on Cedar - Preparation

Exercise – Run a set of commands to set up a Postgres table and populate it

▪ Set up your own copy of the workshop scripts that we use here:
$ cd
$ cp –r /home/wolfgang/db_workshop db_workshop

▪ Issue the commands to set up the table and populate it:

#-- Navigate to sample workshop scripts
$ cd
$ cd db_workshop/postgres

#-- View a prepared set of SQL commands to create a table of
#-- Canadian city info and upload data to it
$ more canada-city.sql

#-- Execute the SQL commands:
#-- It should display a total count of 5521 records
$ psql < canada-city.sql

Deeper dive into PostgreSQL on Cedar – psql Client

Exercise – Run a set of commands to set up a Postgres table and populate it

Useful interactive Postgres command to check things out:

#-- Start up interactive “psql” client
$ psql

-- Get list of all the databases on the server (look for yours)
=> \list (or \l)
-- List tables and views in your database
=> \dt
-- Show fields in a table
=> \d+ canada_city;
-- Count number of rows in your table
=> select count(*) from canada_city;
-- Quit
=> \quit <-- (or \q)

Deeper dive into PostgreSQL on Cedar – psql Client

Database server Exercise – Query optimization

In Postgres (as in other database systems such as MySQL), you can create indexes to
improve SQL commands and can use the EXPLAIN command to verify it.

#-- View a SQL SELECT command followed by an “explain” of it
$ more demo1_explain.sql

#-- Execute the commands and view the Query Plan info
$ psql < demo1_explain.sql

#-- Issue a command to create an index on “population” field
$ more demo1_index.sql
$ psql < demo1_index.sql

#-- Issue commands again to show lower cost for the Query
#-- Plan
psql < demo1_explain.sql

Deeper dive into PostgreSQL on Cedar – psql Client

Database server Exercise – Query optimization

▪ Explains do not actually execute the command, so are ideal for doing against a
command that you are thinking of issuing and looking to see the cost associated
with it – before actually executing it.

▪ Rule of thumb on fields to index:

▪ When doing a join, index each field involved in the join

▪ In a sort, i.e. “order by”

▪ In a conditional (i.e. WHERE clause)

Deeper dive into PostgreSQL on Cedar – psql Client

Database server Exercise – Using GROUP BY and HAVING

Example of using GROUP BY and HAVING to look for duplicated information.

#-- View a SQL SELECT command with GROUP BY

#-- and HAVING to find duplicate cities in the data

$ more demo1_groupby.sql

--

select city,count(city) as "Count“

from canada_city

group by city

having count(city) > 1

;

Deeper dive into PostgreSQL on Cedar – psql Client

Database server Exercise – Using GROUP BY and HAVING

Example of using GROUP BY and HAVING to look for duplicated information.

#-- Execute the command

$ psql < demo1_groupby.sql > demo1_groupby.rep

#-- View result of the command

$ more demo1_groupby.rep

#-- Many duplicates don’t appear to have populations filled

#-- in. Check for duplicates for just those

$ more demo2_groupby.sql

$ psql < demo2_groupby.sql > demo2_groupby.rep

$ more demo2_groupby.rep

Deeper dive into PostgreSQL on Cedar - Python

Exercise – Python scripting

We show here a sample Python script that you can use to issue SQL commands on a
Postgres server, fetch results, and work with them in Python.

Issue these commands:
#--
$ cd ~/db_workshop/postgres

#-- view the code
$ more sample_pg.py

#-- set up runtime libraries for python packages
$ more setrunlib_pg.sh

export LD_LIBRARY_PATH=/cvmfs/soft.computecanada.ca/nix/var/nix/profiles/postgresql-10.2/lib

$ source setrunlib_pg.sh

Create the python virtual environment
$ virtualenv ~/python

Deeper dive into MySQL on Cedar – Python in 2018

Exercise – Python scripting

Also issue these commands:

Activate python virtual environment

$ source ~/python/bin/activate

install psycopg python package

$ pip install psycopg2

run the python script from cedar headnode

$ python ./sample_pg.py

Deeper dive into PostgreSQL on Cedar - Slurm

Exercise – Python scripts

Submit the Python script as a Slurm job

▪ Issue commands
$ cd ~/db_workshop/postgres
#-- View slurm script to execute sample Python script
#--- against your Postgres database
$ more pythonsample_pg.sh
--
#!/bin/bash
#SBATCH --account=ubcss19b-wa_cpu
#SBATCH --reservation=ubcss19b-wr_cpu
#SBATCH --time=00:01:00
#SBATCH --job-name=test_pg
#SBATCH --output=%x-%j.out
export LD_LIBRARY_PATH=/cvmfs/soft.computecanada.ca/nix/var/nix/…
source ~/python/bin/activate
python sample_pg.py > sample_pg.rep
--
$ sbatch pythonsample_pg.sh

** EXTRA DATABASE EXERCISES **

Database slides following contain the following extras that
you can learn about and try out on your own by following the
information on the following slides. It also includes some
MySQL exercises for those who are interested in using MySQL
database services.

Deeper dive into PostgreSQL on Cedar - Perl

Exercise – Perl scripts

We show here a sample Perl script that you can use to issue SQL commands on a
Postgres server, fetch results, and work with them using basic Perl (no DBI).

Issue these commands:
#--

$ cd

$ cd db_workshop/postgres

#-- view the code

$ more sample_pg.pl

#-- execute the program to verify that it works

$ perl sample_pg.pl [database]

Deeper dive into PostgreSQL on Cedar - Perl

Exercise – Perl scripts

Submit the basic Perl script as a Slurm job

▪ Issue commands
$ cd ~/db_workshop/postgres
#-- Edit slurm script to execute sample Perl script
#-- against your Postgres database
$ vi perlsample_pg.sh
--
#!/bin/bash
#SBATCH --account= ubcss19b-wa_cpu
#SBATCH --reservation= ubcss19b-wr_cpu
#SBATCH --time=00:01:00
#SBATCH --job-name=test_pg
#SBATCH --output=%x-%j.out
$ perl sample_pg.pl [database] > sample_pg.rep
--

$ sbatch perlsample_pg.sh

Deeper dive into MySQL on Cedar - Preparation

Exercise - Set up your MySQL environment under your Cedar home directory

▪ Use an ssh client (such as Putty in Windows) to connect to your Compute Canada id on
cedar.computecanada.ca .

▪ You will be using the “mysql” client tool but the default is old. You will want to upload a more recent one
available. Issue the following commands:

$ mysql -–version
$ module load mariadb
$ mysql -–version

To avoid having to type these commands each time you login to use MySQL, insert the following
commands into your Bash init file:

$ cd
$ vi .bashrc
…
module load mariadb
…

▪ As mentioned, there is a .my.cnf file present under your home directory if a MySQL id has been set up for
you. Verify this but be careful about viewing the contents in public as it contains your MySQL id
password:

$ cd
$ ls –ld .my.cnf

Deeper dive into MySQL on Cedar - Preparation

Exercise – Use the mysql client to create your database

▪ Interactively: simply issue the command:
$ mysql

You won’t need to supply MySQL id and password and server name as the client
automatically passes along server host, MySQL user, MySQL password from the .my.cnf
file in your home directory.

▪ Create your database – making sure to prefix it with your id. For example, if your id is
“jack”, then this would work (MySQL commands are terminated with “;”)

$ mysql
-- List your databases
> show databases;
-- Create the database with name prefixed with your id
> create database jack_db;
> quit;

Deeper dive into MySQL on Cedar - Preparation

Exercise – Run a set of commands to set up a MySQL table and populate it

▪ Set up your own copy of the workshop scripts that we use here:
$ cd
$ cp –r /home/wolfgang/db_workshop db_workshop

▪ Issue the commands to set up the table and populate it:
#-- Navigate to sample workshop scripts
$ cd
$ cd db_workshop/mysql

#-- See commands to create a table of Canadian
#-- city info and upload data in CSV format to it
$ more canada-city.sql

#-- see information about the sample data to be uploaded
$ more canada-city.doc

#-- Execute the following commands, substituting the
#-- name of your database for [database]
#-- If successful, it should show a total count of 5521
#-- display 5 rows of the new canada_city table
$ mysql –D [database] < canada-city.sql

Deeper dive into MySQL on Cedar - Preparation

Exercise – Run a set of commands to set up a MySQL table and populate it

Useful interactive MySQL commands to check things out:

#-- Start up interactive “mysql” client
$ mysql
-- Show your databases
> show databases;
-- Connect to your database
> use [database];
-- List tables in your database
> show tables;
-- Show names of fields in a table
> describe canada_city;
-- Count number of rows in your table
> select count(*) from canada_city;
-- Quit
> quit;

Deeper dive into MySQL on Cedar - Preparation

Database server Exercise – Query optimization using EXPLAIN and using indexes

#-- Example of issuing a SQL command followed by EXPLAIN

#-- of the command. Shows 5662 rows of the table processed

$ more demo1_explain.sql

$ mysql –D [database] < demo1_explain.sql | more

#-- Issue this command to create an index on “population”

#-- field

$ more demo1_index.sql

$ mysql –D [database] < demo1_index.sql

#-- Issue explain command to show now only 26 rows of

#-- the table

#-- now being accessed to get results

$ mysql –D [database] < demo1_explain.sql | more

Deeper dive into MySQL on Cedar – Preparation

Notes

▪ Explains do not actually execute the command, so are ideal for doing against a
command that you are thinking of issuing and looking to see how much work it is
likely to be doing – before actually executing it.

▪ Rule of thumb on fields to index:

▪ When doing a join, index each field involved in the join

▪ In a sort, i.e. “order by”

▪ In a conditional (i.e. WHERE clause)

Deeper dive into MySQL on Cedar – Perl #1

Exercise – Perl scripts #1

We show here a sample Perl script that you can use to issue SQL commands on a
MySQL server, fetch results, and work with them with basic Perl.

Issue these commands:
#--

$ cd

$ cd db_workshop/mysql

#-- view the code

$ more sample_mysql.pl

#-- execute the program to verify that it works

$ perl sample_mysql.pl [database]

Deeper dive into MySQL on Cedar – Perl #1

Exercise – Perl scripts #1

Submit the basic Perl script as a Slurm job

▪ Issue commands
$ cd ~/db_workshop/mysql
#-- Edit slurm script to execute sample Perl script
#-- against your MySQL database
$ vi perlsample_mysql.sh

#!/bin/bash
#SBATCH --account=ubcss19b-wa_cpu
#SBATCH --reservation=ubcss19b-wr_cpu
#SBATCH --time=00:01:00
#SBATCH --job-name=test_pg
#SBATCH --output=%x-%j.out
$ perl sample_mysql.pl [database] > sample_mysql.rep

$ sbatch perlsample_mysql.sh

Deeper dive into MySQL on Cedar – Perl #2

Exercise – Perl scripts #2

We show here a sample Perl script that you can use DBI to issue SQL commands on a
MySQL server, fetch results, and work with them.

The DBI Perl modules need to be installed using CPAN. As part of another project,
these modules are accessible to you by setting PERL5LIB appropriately as shown
below via the “source perl5lib” command.

Issue these commands:
#--
$ cd ~/db_workshop/mysql
#-- view the code
$ more sample2_mysql.pl
#-- Set up DBI environment
$ source perl5lib
#-- execute the program to verify that it works
$ perl sample2_mysql.pl [user] [database]

Deeper dive into MySQL on Cedar – Perl #2

Exercise – Perl scripts #2

Submit the basic Perl script as a Slurm job

▪ Issue commands
$ cd ~/db_workshop/mysql
#-- Edit slurm script to execute sample Perl script
#-- against your MySQL database
$ vi perlsample2_mysql.sh

#!/bin/bash
#SBATCH --account=ubcss19b-wa_cpu
#SBATCH --reservation=ubcss19b-wr_cpu
#SBATCH --time=00:01:00
#SBATCH --job-name=test_pg
#SBATCH --output=%x-%j.out
$ source perl5lib
$ perl sample2_mysql.pl [user] [database] > sample2_mysql.rep

$ sbatch perlsample2_mysql.sh

Deeper dive into MySQL on Cedar - Python

Exercise – Python scripting

We show here a sample Python script that needs fixing to work.

Issue these commands:
#--
$ cd ~/db_workshop/mysql
#-- view and fix the code with your database name
$ vi sample_mysql.py
--
Name of database to be accessed
database = "yourdb";
--

#-- each time before using Python
$ source ~/python/bin/activate

#-- execute the program to verify that it works
$ python sample_mysql.py

Deeper dive into MySQL on Cedar - Python

Exercise – Python script

Submit the basic Python script as a Slurm job

▪ Issue commands
$ cd ~/db_workshop/mysql
#-- Edit slurm script to execute sample Python script
#-- against your MySQL database
$ vi pythonsample_mysql.sh

#!/bin/bash
#SBATCH --account=ubcss19b-wa_cpu
#SBATCH --reservation=ubcss19b-wr_cpu
#SBATCH --time=00:01:00
#SBATCH --job-name=test_pg
#SBATCH --output=%x-%j.out
$ source ~/python/bin/activate
$ python sample_mysql.py

$ sbatch pythonsample_mysql.sh

